

Common RAID Disk Data Format

Specification

Revision 1.2

Publication of this Work-in-Progress Draft for review and comment has been
approved by the Common RAID Disk Data Format Technical Working Group.
This draft represents a “best effort” attempt by the DDF TWG to reach
preliminary consensus, and it may be updated, replaced, or obsoleted at any
time. This document should not be used as reference material or cited as
other than a “work in progress.” Suggestion for revision should be directed to
ddftwg@snia.org.

April 10, 2006

Common RAID DDF Spec. 2
 Revision 1.2

Revision History

Revision Date Sections Originator: Comments
1.0 12/14/2004 Bill Dawkins Original Release
1.1 Bill Dawkins

1.10.04 11/16/2005 Bill Dawkins Draft submitted to SNIA
Technical Council

1.10.05 1/12/2006 Bill Dawkins Minor correction –
resubmitted to SNIA
Technical Council

1.2 4/10/2006 Arnold Jones Changed final published
version number to 1.2.

Suggestions for changes or modifications to this document should be sent to the Disk Data Format TWG
at ddftwg@snia.org.

Common RAID DDF Spec. 3
 Revision 1.2

Typographical Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in RFC2119 [http://www.ietf.org/rfc/rfc2119.txt].

Usage

The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1) Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no
alteration, and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof)
is reproduced must acknowledge the SNIA copyright on that material, and must credit the SNIA
for granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any
or this entire document, or distribute this document to third parties. All rights not explicitly granted are
expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by
e-mailing td@snia.org. Please include the identity of the requesting individual and/or company and a brief
description of the purpose, nature, and scope of the requested use.

Copyright © 2005, 2006 Storage Networking Industry Association.

Common RAID DDF Spec. 4
 Revision 1.2

TABLE OF CONTENTS

1 INTRODUCTION... 7

2 OVERVIEW... 8

2.1 Purpose... 8
2.2 Design Considerations .. 9

2.2.1 Location... 9
2.2.2 Locality .. 9
2.2.3 DDF Structure Size ... 9
2.2.4 DDF Structure Contents .. 9
2.2.5 DDF Structure Redundancy .. 10

3 DEFINITIONS.. 11

3.1 RAID Terms... 11
3.1.1 Virtual Disk (VD).. 11
3.1.2 Basic Virtual Disk (BVD).. 11
3.1.3 Secondary Virtual Disk (SVD) ... 11
3.1.4 Disk Grouping.. 11
3.1.5 Foreign configuration... 11
3.1.6 Legacy or Pass-through Disk .. 11

4 RAID LEVELS AND RAID LEVEL QUALIFIERS... 12

4.1 Primary RAID Level .. 12
4.2 RAID Level Qualifier... 12

4.2.1 RAID-0 Simple Striping (PRL=00, RLQ=00).. 13
4.2.2 RAID-1 Simple Mirroring (PRL=01, RLQ=00).. 14
4.2.3 RAID-1 Multi Mirroring (PRL=01, RLQ=01) ... 15
4.2.4 RAID-3 Non-Rotating Parity 0 (PRL=03, RLQ=00)...................................... 16
4.2.5 RAID-3 Non-Rotating Parity N (PRL=03, RLQ=01) 18
4.2.6 RAID-4 Non-Rotating Parity 0 (PRL=04, RLQ=00)...................................... 20
4.2.7 RAID-4 Non-Rotating Parity N (PRL=04, RLQ=01) 22
4.2.8 RAID-5 Rotating Parity 0 with Data Restart (PRL=05, RLQ=00) 23
4.2.9 RAID-5 Rotating Parity N with Data Restart (PRL=05, RLQ=02) 26
4.2.10 RAID-5 Rotating Parity N with Data Continuation (PRL=05, RLQ=03)..... 28
4.2.11 RAID-5E Rotating Parity 0 with Data Restart (PRL=15, RLQ=00)............ 30
4.2.12 RAID-5E Rotating Parity N with Data Restart (PRL=15, RLQ=02) 33
4.2.13 RAID-5E Rotating Parity N with Data Continuation (PRL=15, RLQ=03) .. 36
4.2.14 RAID-5EE Rotating Parity 0 with Data Restart (PRL=25, RLQ=00) 38
4.2.15 RAID-5EE Rotating Parity N with Data Restart (PRL=25, RLQ=02)......... 40
4.2.16 RAID-5EE Rotating Parity N with Data Continuation (PRL=25, RLQ=03) 43
4.2.17 Integrated Adjacent Stripe Mirroring (PRL= 11, RLQ=00) 44
4.2.18 Integrated Offset Stripe Mirroring (PRL=11, RLQ=01) 46
4.2.19 RAID 6 Rotating Parity 0 with Data Restart (PRL=06, RLQ=01) 48

4.2.19.1 Parity Re-computation on Block Update...52
4.2.19.2 Galois Field Operations..52

4.2.20 RAID 6 Rotating Parity N with Data Restart (PRL=06, RLQ=02).............. 55

Common RAID DDF Spec. 5
 Revision 1.2

4.2.20.1 Parity Re-computation on Block Update...58
4.2.20.2 Galois Field Operations..58

4.2.21 RAID 6 Rotating Parity N with Data Continuation (PRL=06, RLQ=03) 58
4.2.21.1 Parity Re-computation on Block Update...61
4.2.21.2 Galois Field Operations..61

4.3 Secondary RAID Level ... 61
4.3.1 Striped Secondary RAID Level (SRL=00) ... 62
4.3.2 Mirrored Secondary RAID Level (SRL=01) ... 64
4.3.3 Concatenated Secondary RAID Level (SLR=02) .. 65
4.3.4 Spanned Secondary RAID Level (SRL=03) .. 67

5 DDF STRUCTURE.. 70

5.1 DDF Structure Overview .. 70
5.2 Byte Ordering ... 71
5.3 Signatures, Timestamps and CRCs.. 73
5.4 GUIDs .. 74

5.4.1 Controller GUID... 74
5.4.2 Physical Disk GUID ... 75
5.4.3 Virtual Disk GUID .. 76
5.4.4 DDF Header GUID .. 76

5.5 DDF Header... 76
5.6 Controller Data ... 81
5.7 Physical Disk Records... 81

5.7.1 Physical Disk Entries... 82
5.8 Virtual Disk Records .. 85

5.8.1 Virtual Disk Entries .. 85
5.9 Configuration Records .. 88

5.9.1 Virtual Disk Configuration Record ... 89
5.9.2 Vendor Unique Configuration Record.. 93
5.9.3 Spare Assignment Record... 93

5.9.3.1 Spare Assignment Entry...95
5.10 Physical Disk Data ... 95
5.11 Bad Block Management Log ... 96

5.11.1 Mapped/Marked Block Entry .. 97
5.12 Diagnostic Space ... 97
5.13 Vendor Specific Logs... 97

Common RAID DDF Spec. 6
 Revision 1.2

Common RAID DDF Spec. 7
 Revision 1.2

1 Introduction
In today’s IT environments, there are several reasons why system administrators would wish to change
the internal RAID solutions they are using. For example, many servers are shipped with a RAID solution
implemented on the motherboard (ROMB). ROMB solutions allow RAID formats to be applied to the disks
internal to the server. As the server’s data set grows, the administrator often finds s/he needs to move to
a larger direct attached storage (DAS) solution with external JBODs. The system administrator would like
to move the internal disks and their data to the DAS system’s external JBODs. One method of migration
is to backup a RAID group, transfer the disks to the new storage system, reconfigure the disks as a new
RAID group behind the new RAID controller, and restore the data from the backup device. This time
consuming procedure also carries some risk of data loss. A better method would be to move the disks
with data-in-place from one RAID implementation to another. Unfortunately, the different methods for
storing configuration information prohibit data-in-place migration between systems from different storage
vendors.

The SNIA Common RAID Disk Data Format Technical Working Group was chartered define a standard
data structure describing how data is formatted across the disks in a RAID group. This specification
defines the Common RAID Disk Data Format (DDF) structure. The DDF structure allows a basic level of
interoperability between different suppliers of RAID technology. The Common RAID DDF structure
benefits storage users by enabling data-in-place migration among systems from different vendors.

Part of the specification defines how data is distributed for many basic RAID levels. This is necessary to
precisely document how data is formatted for RAID levels indicated by the DDF structure. The DDF TWG
recognizes that the formats described do not represent all methods for implementing the defined RAID
levels. The SNIA does not imply that specification formats represent a preferred RAID implementation.
Reviewers of this specification are encouraged to suggest alternate RAID level formats for inclusion into
future revisions of the specification.

The DDF data structure also allows RAID groups with vendor unique RAID formats. While vendor unique
RAID formats prohibit data-in-place migration between vendors, the Common RAID DDF will be a benefit
in these situations. At a minimum, when a RAID group containing a unique format is moved to a different
RAID solution that does not support the format, the new system will still be able to read the DDF
structure. It can identify the RAID groups containing the unique format and notify the system administrator
that these RAID groups contain valid data that is not accessible by the current storage system. Potential
data loss is prevented because the new RAID system will not overwrite the data without administrator
confirmation.

The document is divided into the following sections:

• Section 2 is the overview;
• Section 3 describes the definitions used in this specification;
• Section 4 describes the RAID levels defined in this specification;
• Section 5 details the DDF structure.

Common RAID DDF Spec. 8
 Revision 1.2

2 Overview

2.1 Purpose
This document provides requirements for the RAID configuration Disk Data Format (DDF) structure stored
on physical disks attached to RAID controllers. Configuration on Disk (COD) and Metadata are also
commonly used terms for the same type of data structure. This DDF structure allows storing RAID
configuration information on physical disks by different vendor implementations in a common format so
the user data on physical disks is accessible independent of the RAID controller being used. Controllers
are not required to store this information in the same format in their internal memory.

In the terminology of the SNIA Shared Storage Model (http://www.snia.org/tech_activities/
shared_storage_model), the technical scope of the DDF is limited to the interface between a block
aggregation implementation and storage devices. The DDF is stored as data structures on the storage
devices.

Figure 1: DDF Technical Scope

Common RAID DDF Spec. 9
 Revision 1.2

2.2 Design Considerations
Location, locality, size and contents are major considerations for the DDF structure. Details on the
contents and format of the DDF structure can be found in Section 5.

2.2.1 Location
The Anchor Header (see Section 5.5) for the DDF structure MUST be stored at the last logical block
returned by either the Identify Device or Read Capacity commands depending on the type of physical
disk.

The DDF structure SHOULD be stored at the end of the physical disk next to the anchor header. Storing
the DDF structure at the end of the physical disk allows the possibility of converting a single non-RAID
physical disk to a RAID 1 configuration without shifting user data. Similarly, data on a member of a RAID
1 configuration with the DDF structure at the end can also be accessed using a non-RAID controller.

2.2.2 Locality
Locality is defined as the scope of the DDF structure. One approach is to store configuration information
about all RAID groups attached to a controller on every physical disk connected to the controller. The
second approach is to store configuration information of a RAID group (or virtual disk) only on the
physical disks belonging to the participating in a RAID group. In other words, does the DDF structure on
one RAID group have information about other RAID groups attached to the controller? This plays a role
when a user wants to move a RAID group from one controller to another while keeping the RAID group
intact and without causing ghost images on either controller. If the DDF structure on one RAID group
contains no information about the other RAID groups and if an entire RAID group disappears due to
power or cabling problems, the user should be notified about the missing RAID group. Configuration
information about all RAID groups may be stored on NVRAM on the controller and provide a notification
for the user. However, in case of a failed or replacement controller, the information on the RAID groups is
not available.

The middle ground, chosen for the DDF structure, is to store the complete configuration information of a
RAID group on each physical disk participating in the RAID group and to store a minimal amount of
information about other the RAID groups and physical disks attached to the controller. This allows a
controller to provide notification to the user about missing RAID groups or physical disks when the
controller does not have complete information about the configuration.

2.2.3 DDF Structure Size
A large DDF structure size provides room for expansion in the future and still uses a negligible amount of
storage. It is tempting to use a fixed large DDF structure size, however, low end solutions may not have
the memory space to process large tables.

The DDF structure size is not fixed and depends on solution needs. This is done by using flexible
structures where size is a function of the number of physical and virtual disks. A fixed space SHOULD be
reserved on physical disks for the DDF structure to accommodate the largest DDF structure size for
migration of configurations between different types and classes of solutions. Details on DDF structure
size can be found in Section 5.

2.2.4 DDF Structure Contents
The DDF structure contains information about partitioning, RAID level, and cache parameters for each
virtual disk defined. RAID group state, physical disk location information, and controller settings are
among other information included in the DDF structure. The DDF structure contents are defined in detail
in Section 5.

Common RAID DDF Spec. 10
 Revision 1.2

2.2.5 DDF Structure Redundancy
DDF structure redundancy allows recovery after configuration structure corruption or loss. Support for
redundancy increases solution complexity and is considered OPTIONAL.

Common RAID DDF Spec. 11
 Revision 1.2

3 Definitions
Whenever possible, this specification uses the definitions for storage terminology provided by SNIA’s “A
Dictionary of Storage Networking Terminology.” The dictionary can be found at
http://www.snia.org/education/dictionary. This section defines terms that do not have entries in the SNIA
dictionary. It also defines terms that use definitions that differ from the definition listed in the SNIA
dictionary.

3.1 RAID Terms

3.1.1 Virtual Disk (VD)
A virtual disk is the object presented to the host level for user data storage. At least one physical disk is
associated with a VD.

3.1.2 Basic Virtual Disk (BVD)
A basic virtual disk is a VD configured using only non-hybrid RAID levels like RAID-0, RAID5 or RAID5E.
Its elements are physical disks.

3.1.3 Secondary Virtual Disk (SVD)
A secondary virtual disk is a VD configured using hybrid RAID levels like RAID10 or RAID50. Its elements
are BVDs.

3.1.4 Disk Grouping
A number of physical disks can be combined into a disk group. The primary characteristic of a disk group
is that all VDs created on the physical disks cannot extend to other physical disks that are not part of the
group. Disk Grouping, when enforced, ensures that the contiguous address space of a VD does not
extend beyond a disk group.

3.1.5 Foreign configuration
A configuration moved from one controller to another controller is considered a foreign configuration on
the new controller unless new controller imports the configuration. Whenever a foreign configuration is
detected by a controller, The Foreign_Flag MUST be set in the DDF header on the physical disks in the
foreign configuration. Details of the Foreign_Flag can be found in Section 5.5.

3.1.6 Legacy or Pass-through Disk
Legacy (pass-through) physical disks are attached to a RAID controller and operate as if they were
attached to a non-RAID controller. No DDF structure is stored on these physical disks. This feature is
primarily targeted for users moving physical disks containing data from non-RAID controllers to RAID
controllers.

Common RAID DDF Spec. 12
 Revision 1.2

4 RAID Levels and RAID Level Qualifiers
This section lists the RAID types and qualifiers for use in following fields used in the Configuration Record
(Section 5.9):

• Primary RAID Level

• RAID Level Qualifier

• Secondary RAID Level

4.1 Primary RAID Level
Table 1 lists values used in the Primary_RAID_Level field of the Virtual Disk Configuration Record
(Section 5.9.1) and the definitions of these values. The Primary_RAID_Level field MUST use the values
listed in Table 1. The table defines the standard RAID levels, such as RAID 0, 1, 3, 5, etc. and some
proprietary RAID types. Non-RAID types such as JBOD and concatenation are also included for
completeness.

Table 1: Primary RAID Levels

Name PRL
Byte

Description

RAID-0 00 Striped array with no parity
RAID-1 01 Mirrored array
RAID-3 03 Striped array with typically non-rotating parity, optimized for long,

single-threaded transfers
RAID-4 04 Striped array with typically non-rotating parity, optimized for short,

multi-threaded transfers
RAID-5 05 Striped array with typically rotating parity, optimized for short, multi-

threaded transfers
RAID-6 06 Similar to RAID-5, but with dual rotating parity physical disks, tolerating

two physical disk failures
RAID-1E 11 >2 disk RAID-1, similar to RAID-10 but with striping integrated into

array
Single Disk 0F Single, non-arrayed disk
Concatenation 1F Physical disks combined head to tail
RAID-5E 15 RAID-5 with hot space at end of array
RAID-5EE 25 RAID-5 with hot space integrated into array

4.2 RAID Level Qualifier
This section defines RAID Level Qualifiers (RLQ) for each Primary RAID Level as defined earlier. The
RLQ field MUST be ignored for JBOD and Concatenations (PRL=0F and 1F). Examples are provided for
each RLQ where columns show extents (e.g., member physical disks, partitions of member physical
disks, etc.) of a VD.

Common RAID DDF Spec. 13
 Revision 1.2

4.2.1 RAID-0 Simple Striping (PRL=00, RLQ=00)
Figure 1 shows an example of simple striping (RAID-0). The standard SNIA dictionary definitions for
stripe, strip, stripe depth, and extent are used by this example and following examples. For a Basic Virtual
Disk, as defined by this specification, an extent MUST be a contiguous area of a physical disk. A BVD’s
extents MUST be of equal size but are not required to reside in the same location of each physical disk.

The example introduces the concept of extent and stripe indices for a strip. strip (i, j) represents the strip
located on extent i in stripe j. The data block index k represents the offset of a given data block from the
beginning of a strip. To represent a specific block in a specific extent the following notation is used:

extent_block (k, i, j).

To refer to a specific block in a virtual disk, the following notation is used:

virtual_block (x),

where x is the offset from the beginning of the VD. Table 2 summarizes the indices and constants used in
the notation along with the any restrictions on legal values.

Table 2: Indices and Constants for Simple Striping

For RAID-0 (PRL=00, RLQ=00), the first strip of the virtual disk MUST be strip (0,0). The allocation of
data MUST adhere to the following formula:

Eq. 1

virtual_block (x) = extent_block (MOD(x,L), MOD(FLOOR(x/L), N), FLOOR(FLOOR(x/L)/N)).

Variable or Index Description Minimum Value Maximum Value

i Index of an extent of a
VD

0 N-1

j Index of a stripe in a VD 0 FLOOR(FLOOR((M-
1)/L)/N)

k Offset of a data block
from the beginning of a
strip

0 L-1

L Size of a strip in blocks N/A (a fixed value) N/A (a fixed value)
M Number of blocks in a

VD. M MUST be evenly
divisible by N.

N/A (a fixed value) N/A (a fixed value)

N Number of extents in a
VD

N/A (a fixed value) N/A (a fixed value)

x Offset of a data block
from the beginning of a
VD

0 M-1

Common RAID DDF Spec. 14
 Revision 1.2

Virtual Disk

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3
 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7
 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11
 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 0

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

Extent 1

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

Extent 2

 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11

Extent 3

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 4

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

Stripe 0

Depth

Strip (0,0) Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0)

 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

 Data Block 36
 Data Block 37
 Data Block 38
 Data Block 39

Stripe 1

Depth

Strip (0,1) Strip (1,1) Strip (2,1) Strip (3,1) Strip (4,1)

Extent Stripe Length

M
ap

pi
ng

 F
un

ct
io

n

 Data Block 40
 Data Block 41
 Data Block 42
 Data Block 43

 Data Block 44
 Data Block 45
 Data Block 46
 Data Block 47

 Data Block 48
 Data Block 49
 Data Block 50
 Data Block 51

 Data Block 52
 Data Block 53
 Data Block 54
 Data Block 55

 Data Block 56
 Data Block 57
 Data Block 58
 Data Block 59

Stripe 2

Depth

Strip (0,2) Strip (1,2) Strip (2,2) Strip (3,2) Strip (4,2)

Figure 2: Simple Striping (PRL=00, RLQ=00) Example

4.2.2 RAID-1 Simple Mirroring (PRL=01, RLQ=00)
A VD with PRL=01 and RLQ=00 MUST have two and only two extents. Each extent MUST be equal to
the size of the VD. Each block of the VD, virtual_block(x), MUST be duplicated on both extents at the
same offset

Figure 3 gives an example of simple mirroring.

Common RAID DDF Spec. 15
 Revision 1.2

Figure 3: Simple Mirroring (PRL=01, RLQ=00) Example

4.2.3 RAID-1 Multi Mirroring (PRL=01, RLQ=01)
Multi Mirroring (PRL=01, RLQ=01) is a triple mirror. Data MUST be triple copied on three extents. Each
virtual_block(x) MUST be duplicated on each extent in the VD. Figure 4 gives an example of multi
mirroring.

Common RAID DDF Spec. 16
 Revision 1.2

Figure 4: Multi Mirroring (PRL=01, RLQ=01) Example

4.2.4 RAID-3 Non-Rotating Parity 0 (PRL=03, RLQ=00)
Figure 5 gives an example of RAID-3 with parity contained on the first extent or Non-Rotating Parity 0.
Table 3 defines the indices and constants used in the description of RAID-3.

Common RAID DDF Spec. 17
 Revision 1.2

Table 3: Indices and Constants for RAID-3 Non-Rotating Parity

In a RAID-3 VD with N extents, a virtual data block MUST be segmented into N-1 block portions. The
notation for data block portions is:

block_portion (p, i, j)

The allocation of data blocks in a RAID-3 Non-Rotating Parity 0 VD MUST adhere to the following
formula:

Eq. 2

virtual_block(x) =
2

0
||
−

=

N

p
block_portion(p, p+1, x),

where || represents the concatenation operator.

Parity blocks MUST reside on extent 0. The values of the parity blocks must adhere to the following
formula:

Eq. 3

parity_block (0, 0, x) = ⊕
−

=

2

0

N

p
 block_portion(p, p+1, x).

Variable or Index Description Minimum Value Maximum Value

i Index of an extent of a
VD

0 N-1

j Index of a stripe in a VD 0 M-1
p Index of a data block

portion
0 N-1

M Number of data blocks
in a VD

N/A (a fixed value) N/A (a fixed value)

N Number of extents in a
VD

N/A (a fixed value) N/A (a fixed value)

x Offset of a data block
from the beginning of a
VD

0 M-1

Common RAID DDF Spec. 18
 Revision 1.2

Figure 5: RAID-3 Non-Rotating Parity 0 (PRL=03, RLQ=00) Example

4.2.5 RAID-3 Non-Rotating Parity N (PRL=03, RLQ=01)
Figure 6 gives an example of a RAID-3 Non-Rotating Parity N VD. The indices and constants defined in
Table 3 are valid for this type of VD.

Common RAID DDF Spec. 19
 Revision 1.2

Figure 6: RAID-3 Non-Rotating Parity N (PRL=03, RLQ=01) Example

The allocation of data blocks in a RAID-3 Non-Rotating Parity N VD MUST adhere to the following
formula:

Eq. 4

virtual_block(x) =
2

0
||
−

=

N

p
block_portion(p, p, x).

Common RAID DDF Spec. 20
 Revision 1.2

Parity Blocks MUST reside on extent N. The allocation of parity blocks MUST adhere to the following
formula:

Eq. 5

parity_block (0, N, x) = ⊕
−

=

2

0

N

p
 block_portion(p, p, x).

4.2.6 RAID-4 Non-Rotating Parity 0 (PRL=04, RLQ=00)
Figure 7 gives an example of Non-Rotating Parity 0 (a.k.a. RAID-4).

Table 4: Indices and Constants for RAID 4 Non-Rotating Parity

The allocation of data blocks in a Non-Rotating Parity 0 VD MUST adhere to the following equation:

Eq. 6

virtual_block (x) = extent_block (MOD(x,L), MOD(FLOOR(x/L), N-1) +1, FLOOR(FLOOR(x/L)/N-1)).

A parity block contains the parity calculated for N-1 data blocks. The following notation is used to
represent a parity block:

parity_block (k, i, j).

The values of the parity blocks MUST be calculated according to the following formula:

Variable or Index Description Minimum Value Maximum Value

i Index of an extent of a
VD

0 N-1

j Index of a stripe in a VD 0 FLOOR(FLOOR((M-
1)/L)/N-1)

k Offset of a block from
the beginning of a strip

0 L-1

L Size of a strip in blocks N/A (a fixed value) N/A (a fixed value)
M Number of data blocks

in a VD. M MUST be
evenly divisible by N-1.

N/A (a fixed value) N/A (a fixed value)

N Number of extents in a
VD

N/A (a fixed value) N/A (a fixed value)

x Offset of a data block
from the beginning of a
VD

0 M-1

Common RAID DDF Spec. 21
 Revision 1.2

Eq. 7

parity_block (k, 0, j) = ⊕
−

=

1

1

N

i
 extent_block(k, i, j).

For Non-Rotating Parity 0, all parity blocks MUST reside on extent 0. Thus, i MUST equal zero for all
parity blocks.

Virtual Disk

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3
 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7
 Data Block 8
 Data Block 9

 Data Block 10
 Data Block 11
 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 1

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

Extent 2

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

Extent 3

 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11

Extent 4

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 0

Parity (0,0,0)
Parity (1,0,0)
Parity (2,0,0)
Parity (3,0,0)

Stripe 0

Depth

Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0)Strip (0,0)

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

Parity (0,0,1)
Parity (1,0,1)
Parity (2,0,1)
Parity (3,0,1)

Stripe 1

Depth

Strip (1,1) Strip (2,1) Strip (3,1) Strip (4,1)Strip (0,1)

Extent Stripe Length

M
ap

pi
ng

 F
un

ct
io

n

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

 Data Block 36
 Data Block 37
 Data Block 38
 Data Block 39

 Data Block 40
 Data Block 41
 Data Block 42
 Data Block 43

 Data Block 44
 Data Block 45
 Data Block 46
 Data Block 47

Parity (0,0,2)
Parity (1,0,2)
Parity (2,0,2)
Parity (3,0,2)

Stripe 2

Depth

Strip (1,2) Strip (2,2) Strip (3,2) Strip (4,2)Strip (0,2)

Figure 7: Non-Rotating Parity 0 (PRL=04, PRL=00) Example

Common RAID DDF Spec. 22
 Revision 1.2

4.2.7 RAID-4 Non-Rotating Parity N (PRL=04, RLQ=01)
Figure 8 gives an example on Non-Rotating Parity N (a.k.a. RAID-4). Non-Rotating Parity N differs from
Non-Rotating Parity 0 in that the parity is stored in the last extent of a VD. The indices and constants of
Table 4 are valid for Non-Rotating Parity N.

The allocation of data blocks in a Non-Rotating Parity N VD MUST adhere to the following formula:

Eq. 8

virtual_block (x) = extent_block (MOD(x,L), MOD(FLOOR(x/L), N-1), FLOOR(FLOOR(x/L)/N-1)).

The values of the parity blocks MUST be calculated according to the following formula:

Eq. 9

parity_block (k, N-1, j) = ⊕
−

=

2

0

N

i
 extent_block(k, i, j).

All parity blocks MUST reside on extent N-1. Thus, i MUST equal N-1 for all parity blocks.

Common RAID DDF Spec. 23
 Revision 1.2

Extent 0

Virtual Disk

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3
 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7
 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11
 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

Extent 1

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

Extent 2

 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11

Extent 3

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 4

Parity (0,4,0)
Parity (1,4,0)
Parity (2,4,0)
Parity (3,4,0)

Stripe 0

Depth

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

Parity (0,4,1)
Parity (1,4,1)
Parity (2,4,1)
Parity (3,4,1)

Stripe 1

Depth

Extent Stripe Length

M
ap

pi
ng

 F
un

ct
io

n

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

 Data Block 36
 Data Block 37
 Data Block 38
 Data Block 39

 Data Block 40
 Data Block 41
 Data Block 42
 Data Block 43

 Data Block 44
 Data Block 45
 Data Block 46
 Data Block 47

Parity (0,4,2)
Parity (1,4,2)
Parity (2,4,2)
Parity (3,4,2)

Stripe 2

Depth

Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0)Strip (0,0)

Strip (1,1) Strip (2,1) Strip (3,1) Strip (4,1)Strip (0,1)

Strip (1,2) Strip (2,2) Strip (3,2) Strip (4,2)Strip (0,2)

Figure 8: Non-Rotating Parity N (PRL=04, RLQ=01)

4.2.8 RAID-5 Rotating Parity 0 with Data Restart (PRL=05, RLQ=00)
Figure 9 gives an example of Rotating Parity 0 with Data Restart. Rotating Parity 0 with Data Restart is an
implementation of RAID-5.

Common RAID DDF Spec. 24
 Revision 1.2

Extent 0

Virtual Disk

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3
 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7
 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11
 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 1 Extent 2 Extent 3 Extent 4

Stripe 0

Depth

Strip (0,0) Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0)

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

Stripe 1

Depth

Strip (0,1) Strip (1,1) Strip (2,1) Strip (3,1) Strip (4,1)

Extent Stripe Length

M
ap

pi
ng

 F
un

ct
io

n

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

 Data Block 36
 Data Block 37
 Data Block 38
 Data Block 39

 Data Block 40
 Data Block 41
 Data Block 42
 Data Block 43

 Data Block 44
 Data Block 45
 Data Block 46
 Data Block 47

Stripe 2

Depth

Strip (1,2) Strip (2,2) Strip (3,2) Strip (4,2)Strip (0,2)

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Parity (0,0,0)
Parity (1,0,0)
Parity (2,0,0)
Parity (3,0,0)

Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Parity (0,2,2)
Parity (1,2,2)
Parity (2,2,2)
Parity (3,2,2)

Figure 9: Rotating Parity 0 with Data Restart (PRL=05, RLQ=00)

Common RAID DDF Spec. 25
 Revision 1.2

Table 5: Indices and Constants for RAID-5 Rotating Parity 0 and N

The extent p on which the parity block for a given virtual block x resides MUST adhere to the following
formula:

Eq. 10

p = MOD(FLOOR(FLOOR(x/L)/(N-1)),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Eq. 11

 IF MOD(FLOOR(x/L),N-1) < p

 THEN i = MOD(FLOOR(x/L),N-1)

 ELSE i = MOD(FLOOR(x/L),N-1)+1.

The allocation of data blocks in a Rotating Parity 0 with Data Restart VD MUST adhere to the following
formula:

Eq. 12

virtual_block (x) = extent_block (MOD(x/L), i, FLOOR(FLOOR(x/L)/N-1)

The values of the parity blocks MUST be calculated according to the following formula:

Variable or Index Description Minimum Value Maximum Value

i Index of an extent of a
VD

0 N-1

j Index of a stripe in a VD 0 FLOOR(FLOOR((M-
1)/L)/(N-1))

k Offset of a block from
the beginning of a strip

0 L-1

L Size of a strip in blocks N/A (a fixed value) N/A (a fixed value)
M Number of data blocks

in a VD. M MUST be
evenly divisible by (N-
1)*L .

N/A (a fixed value) N/A (a fixed value)

N Number of extents in a
VD

N/A (a fixed value) N/A (a fixed value)

x Offset of a data block
from the beginning of a
VD

0 M-1

p Index of the extent on
which the parity_blocks
for a given stripe reside

0 N-1

Common RAID DDF Spec. 26
 Revision 1.2

Eq. 13

parity_block (k, p, j) = ⊕
≠−

=

piN

i

,1

0
 extent_block (k, i, j).

4.2.9 RAID-5 Rotating Parity N with Data Restart (PRL=05, RLQ=02)
Figure 10 gives an example of an implementation of RAID-5 called Rotating Parity N with Data Restart.
The indices and constants listed in Table 5 are valid for this type of RAID.

Common RAID DDF Spec. 27
 Revision 1.2

Figure 10: Rotating Parity N with Data Restart (PR=05, RLQ=02)

The extent p on which the parity block for a given virtual block x resides MUST adhere to the following
formula:

Eq. 14

p = (N-1)-MOD(FLOOR(FLOOR(x/L)/(N-1)),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Common RAID DDF Spec. 28
 Revision 1.2

Eq. 15

 IF MOD(FLOOR(x/L),N-1) < p

 THEN i = MOD(FLOOR(x/L),N-1)

 ELSE i = MOD(FLOOR(x/L),N-1)+1.

The allocation of data blocks in a Rotating Parity N with Data Restart VD MUST adhere to the following
formula:

Eq. 16

virtual_block (x) = extent_block (MOD(x/L), i, FLOOR(FLOOR(x/L)/N-1)

The values of the parity blocks MUST be calculated according to the following formula:

Eq. 17

parity_block (k, p, j) = ⊕
≠−

=

piN

i

,1

0
 extent_block (k, i, j).

4.2.10 RAID-5 Rotating Parity N with Data Continuation (PRL=05, RLQ=03)
Figure 11 gives an example of RAID-5 implemented with Rotating Parity N with Data Continuation. The
indices and constants given in Table 5 also apply to the formulas given below for Rotating Parity N with
Data Continuation.

The extent p on which the parity block for a given virtual block x resides MUST adhere to the following
formula:

Eq. 18

p = (N-1)-MOD(FLOOR(FLOOR(x/L)/(N-1)),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Eq. 19

i = MOD(MOD(FLOOR(x/L),(N-1))+p+1),N).

The allocation of data blocks in a Rotating Parity N with Data Continuation VD MUST adhere to the
following formula:

Eq. 20

virtual_block (x) = extent_block (MOD(x/L), i, FLOOR(FLOOR(x/L)/N-1)

The values of the parity blocks MUST be calculated according to the following formula:

Common RAID DDF Spec. 29
 Revision 1.2

Eq. 21

parity_block (k, p, j) = ⊕
≠−

=

piN

i

,1

0
 extent_block (k, i, j).

Extent 0

Virtual Disk

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3
 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7
 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11
 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

Extent 1

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

Extent 2

 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11

Extent 3

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 4

Stripe 0

Depth

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

Stripe 1

Depth

Extent Stripe Length

M
ap

pi
ng

 F
un

ct
io

n

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

 Data Block 36
 Data Block 37
 Data Block 38
 Data Block 39

 Data Block 40
 Data Block 41
 Data Block 42
 Data Block 43

 Data Block 44
 Data Block 45
 Data Block 46
 Data Block 47

Stripe 2

Depth

Strip (0,0)

Strip (0,1)

Strip (0,2)

Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0)

Strip (1,1) Strip (2,1) Strip (3,1) Strip (4,1)

Strip (1,2) Strip (2,2) Strip (3,2) Strip (4,2)

Parity (0,4,0)
Parity (1,4,0)
Parity (2,4,0)
Parity (3,4,0)

Parity (0,3,1)
Parity (1,3,1)
Parity (2,3,1)
Parity (3,3,1)

Parity (0,2,2)
Parity (1,2,2)
Parity (2,2,2)
Parity (3,2,2)

Figure 11: Rotating Parity N with Data Continuation (PRL=05, RLQ=03)

Common RAID DDF Spec. 30
 Revision 1.2

4.2.11 RAID-5E Rotating Parity 0 with Data Restart (PRL=15, RLQ=00)
Figure 12 gives an example of RAID-5E implemented with Rotating Parity 0 with Data Restart. RAID-5E
has hot space at the end of each extent. In the event of an extent failure, the hot space on the remaining
extents is used to rebuild and re-stripe the data in a manner that the remaining extents become a RAID-5
VD. Table 6 gives the indices and constants used to describe the data layout of this type of RAID in the
following formulas.

Common RAID DDF Spec. 31
 Revision 1.2

Extent 0

Virtual Disk

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3
 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7
 Data Block 8
 Data Block 9

 Data Block 10
 Data Block 11
 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 1 Extent 2 Extent 3 Extent 4

Stripe 0

Depth

Strip (0,0) Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0)

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

Stripe 1

Depth

Strip (0,1) Strip (1,1) Strip (2,1) Strip (3,1) Strip (4,1)

Extent Stripe Length

M
ap

pi
ng

 F
un

ct
io

n

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

 Data Block 36
 Data Block 37
 Data Block 38
 Data Block 39

 Data Block 40
 Data Block 41
 Data Block 42
 Data Block 43

 Data Block 44
 Data Block 45
 Data Block 46
 Data Block 47

Stripe 2

Depth

Strip (1,2) Strip (2,2) Strip (3,2) Strip (4,2)Strip (0,2)

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

 Data Block 8
 Data Block 9

 Data Block 10
 Data Block 11

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Parity (0,0,0)
Parity (1,0,0)
Parity (2,0,0)
Parity (3,0,0)

Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Parity (0,2,2)
Parity (1,2,2)
Parity (2,2,2)
Parity (3,2,2)

 Data Block M-16
 Data Block M-15
 Data Block M-14
 Data Block M-13

 Data Block M-12
 Data Block M-11
 Data Block M-10
 Data Block M-9

 Data Block M-4
 Data Block M-3
 Data Block M-2
 Data Block M-1

 Data Block M-8
 Data Block M-7
 Data Block M-6
 Data Block M-5

Stripe W

Depth

Strip (1,W) Strip (4,W)Strip (3,W)Strip (2,W)Strip (0,W)
Parity (0,4,W)
Parity (1,4,W)
Parity (2,4,W)
Parity (3,4,W)

HS Block 0
HS Block 1

 HS Block Q-1

HS Block Q
HS Block Q+1

 HS Block R-1

HS Block R
HS Block R+1

 HS Block S-1

HS Block S
HS Block S+1

 HS Block T-1

HS Block T
HS Block T+1

 HS Block U-1

Figure 12: RAID-5E Rotating Parity 0 with Data Restart (PRL-15, RLQ=00)

Common RAID DDF Spec. 32
 Revision 1.2

Table 6: Indices and Constants for RAID-5E

The extent p on which the parity block for a given virtual block x resides MUST adhere to the following
formula:

Eq. 22

p = MOD(FLOOR(FLOOR(x/L)/(N-1)),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Eq. 23

 IF MOD(FLOOR(x/L),N-1) < p

 THEN i = MOD(FLOOR(x/L),N-1)

 ELSE i = MOD(FLOOR(x/L),N-1)+1.

The allocation of data blocks in a RAID-5E Rotating Parity 0 with Data Restart VD MUST adhere to the
following formula:

Eq. 24

virtual_block (x) = extent_block (MOD(x/L), i, FLOOR(FLOOR(x/L)/N-1)

The values of the parity blocks MUST be calculated according to the following formula:

Variable or Index Description Minimum Value Maximum Value

i Index of an extent of a
VD

0 N-1

j Index of a stripe in a VD 0 FLOOR(FLOOR((M-
1)/L)/(N-1))

k Offset of a block from
the beginning of a strip

0 L-1

L Size of a strip in blocks N/A (a fixed value) N/A (a fixed value)
M Number of data blocks

in a VD. M MUST be
evenly divisible by (N-
1)*L

N/A (a fixed value) N/A (a fixed value)

N Number of extents in a
VD

N/A (a fixed value) N/A (a fixed value)

x Offset of a data block
from the beginning of a
VD

0 M-1

p Index of the extent on
which the parity_blocks
for a given stripe reside

0 N-1

U Number of hot space
blocks

≥ ((M/(N-1)) * N) - M ≥ ((M/(N-1)) * N) - M

W Index of the last stripe
containing data blocks

FLOOR(FLOOR((M-
1)/L)/(N-1))

FLOOR(FLOOR((M-
1)/L)/(N-1))

Common RAID DDF Spec. 33
 Revision 1.2

Eq. 25

parity_block (k, p, j) = ⊕
≠−

=

piN

i

,1

0
 extent_block (k, i, j).

The number of hot space blocks U MUST adhere to the following formula:

Eq. 26

U ≥ ((M/(N-1)) * N) - M

Hot space blocks MUST begin at offset M from the beginning of the VD. The total number of blocks in the
VD MUST equal M+U. The hot space blocks MUST be evenly distributed across all extents. All hot space
blocks on an extent MUST reside at the end of the extent.

In the event of an extent failure, the controller MUST reallocate the data as described in Section 4.2.8.
The number of extents used in the resulting RAID-5 VD MUST be equal to the number of extents used in
the RAID-5E VD reduced by one.

4.2.12 RAID-5E Rotating Parity N with Data Restart (PRL=15, RLQ=02)
Figure 13 gives an example of a RAID-5E implementation utilizing Rotating Parity N with Data Restart.
The indices and constants listed in Table 6 are valid for this type of RAID.

The extent p on which the parity block for a given virtual block x resides MUST adhere to the following
formula:

Eq. 27

p = (N-1)-MOD(FLOOR(FLOOR(x/L)/(N-1)),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Eq. 28

 IF MOD(FLOOR(x/L),N-1) < p

 THEN i = MOD(FLOOR(x/L),N-1)

 ELSE i = MOD(FLOOR(x/L),N-1)+1.

The allocation of data blocks in a RAID-5E Rotating Parity N with Data Restart VD MUST adhere to the
following formula:

Eq. 29

virtual_block (x) = extent_block (MOD(x/L), i, FLOOR(FLOOR(x/L)/N-1)

The values of the parity blocks MUST be calculated according to the following formula:

Common RAID DDF Spec. 34
 Revision 1.2

Eq. 30

parity_block (k, p, j) = ⊕
≠−

=

piN

i

,1

0
 extent_block (k, i, j).

The number of hot space blocks U MUST adhere to the following formula:

Eq. 31

U ≥ ((M/(N-1)) * N) - M

Hot space blocks MUST begin at offset M from the beginning of the VD. The total number of blocks in the
VD MUST equal M+U. The hot space blocks MUST be evenly distributed across all extents. All hot space
blocks on an extent MUST reside at the end of the extent.

In the event of an extent failure, the controller MUST reallocate the data as described in Section 4.2.9.
The number of extents used in the resulting RAID-5 VD MUST be equal to the number of extents used in
the RAID-5E VD reduced by one.

Common RAID DDF Spec. 35
 Revision 1.2

Figure 13: RAID-5E Rotating Parity N with Data Restart (PRL=15, RLQ=02)

Common RAID DDF Spec. 36
 Revision 1.2

4.2.13 RAID-5E Rotating Parity N with Data Continuation (PRL=15, RLQ=03)
Figure 14 given an example of a RAID-5E volume implemented utilizing Rotating Party N with Data
Continuation. The indices and constants listed in Table 6 are valid for this type of RAID.

The extent p on which the parity block for a given virtual block x resides MUST adhere to the following
formula:

Eq. 32

p = (N-1)-MOD(FLOOR(FLOOR(x/L)/(N-1)),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Eq. 33

i = MOD(MOD(FLOOR(x/L),(N-1))+p+1),N).

The allocation of data blocks in a RAID-5E Rotating Parity N with Data Continuation VD MUST adhere to
the following formula:

Eq. 34

virtual_block (x) = extent_block (MOD(x/L), i, FLOOR(FLOOR(x/L)/N-1)

The values of the parity blocks MUST be calculated according to the following formula:

Eq. 35

parity_block (k, p, j) = ⊕
≠−

=

piN

i

,1

0
 extent_block (k, i, j).

The number of hot space blocks U MUST adhere to the following formula:

Eq. 36

U ≥ ((M/(N-1)) * N) - M

Hot space blocks MUST begin at offset M from the beginning of the VD. The total number of blocks in the
VD MUST equal M+U. The hot space blocks MUST be evenly distributed across all extents. All hot space
blocks on an extent MUST reside at the end of the extent.

In the event of an extent failure, the controller MUST reallocate the data as described in Section 4.2.10.
The number of extents used in the resulting RAID-5 VD MUST be equal to the number of extents used in
the RAID-5E VD reduced by one.

Common RAID DDF Spec. 37
 Revision 1.2

Figure 14: RAID-5E Rotating Parity N with Data Continuation (PRL=15, RLQ=03)

Common RAID DDF Spec. 38
 Revision 1.2

4.2.14 RAID-5EE Rotating Parity 0 with Data Restart (PRL=25, RLQ=00)
Figure 15 gives an example of RAID-5EE implemented with Rotating Parity 0 with Data Restart. RAID-
5EE has hot space distributed across the extents. In the event of an extent failure, the hot space on the
remaining extents is used to rebuild and re-stripe the data in a manner that the remaining extents become
a RAID-5 VD.

Figure 15: RAID-5EE Rotating Parity 0 with Data Restart (PRL=25, RLQ=00)

Table 7 gives the indices and constants used to describe the data layout of this type of RAID in the
following formulas.

Common RAID DDF Spec. 39
 Revision 1.2

Table 7: Indices and Constants for RAID-5EE

The stripe j on which a given virtual block x resides MUST adhere to the following formula:

Eq. 37

j = (FLOOR(FLOOR(x/L)/(N-2))

The extent p on which the parity for a given stripe j resides MUST adhere to the following formula:

Eq. 38

p = MOD(j,N).

The extent h on which hot space for a given stripe j resides MUST adhere to the following formula:

Eq. 39

h = MOD((p+1),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Eq. 40

IF MOD(FLOOR(x/L),N-2) < p

THEN

IF MOD(FLOOR(x/L),N-2) < h

Variable or Index Description Minimum Value Maximum Value

i Index of an extent of a
VD

0 N-1

j Index of a stripe in a VD 0 FLOOR(FLOOR(M-
1/L)/(N-2))

k Offset of a block from
the beginning of a strip

0 L-1

L Size of a strip in blocks N/A (a fixed value) N/A (a fixed value)
M Number of data blocks

in a VD. M MUST be
evenly divisible by (N-
2)*L

N/A (a fixed value) N/A (a fixed value)

N Number of extents in a
VD

N/A (a fixed value) N/A (a fixed value)

x Offset of a data block
from the beginning of a
VD

0 M-1

p Index of the extent on
which the parity_blocks
for a given stripe reside

0 N-1

h Index of the extent on
which the hot space for
a given strip resides

0 N-1

Common RAID DDF Spec. 40
 Revision 1.2

THEN

i = MOD(FLOOR(x/L),N-2)

ELSE

i = MOD(FLOOR(x/L),N-2)+1

ELSE

i = MOD(FLOOR(x/L,1),N-2)+2

The allocation of data blocks in a RAID-5EE Rotating Parity 0 with Data Restart VD MUST adhere to the
following formula:

Eq. 41

virtual_block(x) = extent_block(MOD(x/L), i, j)

The values of the party blocks MUST be calculated according to the following formula:

Eq. 42

parity_block (k, p, j) =
hipiN

i

≠≠−

=
⊗

,,1

0
 extent_block (k, i, j).

In the event of an extent failure, the controller MUST reallocate the data as describe in Section 4.2.8. The
number of extents used in the resulting RAID-5 VD MUST be equal to the number of extents used in the
RAID-5EE volume reduced by one.

4.2.15 RAID-5EE Rotating Parity N with Data Restart (PRL=25, RLQ=02)
Figure 16 gives an example of RAID-5EE implemented with Rotating Parity N with Data Restart. The
indices and constants given in Table 7 are used in the description below.

The stripe j on which a given virtual block x resides MUST adhere to the following formula:

Eq. 43

j = (FLOOR(FLOOR(x/L)/(N-2)).

The extent p on which the parity for a given stripe j resides MUST adhere to the following formula:

Eq. 44

p = (N-1) - MOD(j,N).

The extent h on which hot space for a given stripe j resides MUST adhere to the following formula:

Eq. 45

h = MOD((p-1),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Common RAID DDF Spec. 41
 Revision 1.2

Eq. 46

IF MOD(FLOOR(x/L),N-2) < h

THEN

IF MOD(FLOOR(x/L),N-2) < p

THEN

i = MOD(FLOOR(x/L),N-2)

ELSE

i = MOD(FLOOR(x/L),N-2)+1

ELSE

i = MOD(FLOOR(x/L,1),N-2)+2

The allocation of data blocks in a RAID-5EE Rotating Parity N with Data Restart VD MUST adhere to the
following formula:

Eq. 47

virtual_block(x) = extent_block(MOD(x/L), i, j).

Common RAID DDF Spec. 42
 Revision 1.2

M
ap

pi
ng

 F
un

ct
io

n

Figure 16: RAID-5EE Rotating Parity N with Data Restart (PRL=25, RLQ=02)

The values of the party blocks MUST be calculated according to the following formula:

Eq. 48

parity_block (k, p, j) =
hipiN

i

≠≠−

=
⊗

,,1

0
 extent_block (k, i, j).

Common RAID DDF Spec. 43
 Revision 1.2

In the event of an extent failure, the controller MUST reallocate the data as describe in Section 4.2.9. The
number of extents used in the resulting RAID-5 VD MUST be equal to the number of extents used in the
RAID-5EE volume reduced by one.

4.2.16 RAID-5EE Rotating Parity N with Data Continuation (PRL=25, RLQ=03)
Figure 17 gives an example of RAID-5EE implemented with Rotating Party N with Data Continuation. The
indices and constants given in Table 7 are used in the description below.

The strip j on which a given virtual block x resides MUST adhere to the following formula:

Eq. 49

j = (FLOOR(FLOOR(x/L)/(N-2)).

The extent p on which the parity for a given stripe j resides MUST adhere to the following formula:

Eq. 50

p = (N-1) - MOD(j,N).

The extent h on which hot space for a given stripe j resides MUST adhere to the following formula:

Eq. 51

h = MOD((p-1),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Eq. 52

i = MOD(MOD(FLOOR(x/L),N-2)+p+1,N).

The allocation of data blocks in a RAID-5EE Rotating Parity N with Data Restart VD MUST adhere to the
following formula:

Eq. 53

virtual_block(x) = extent_block(MOD(x/L), i, j).

The values of the party blocks MUST be calculated according to the following formula:

Eq. 54

parity_block (k, p, j) =
hipiN

i

≠≠−

=
⊗

,,1

0
 extent_block (k, i, j).

In the event of an extent failure, the controller MUST reallocate the data as describe in Section 4.2.10.
The number of extents used in the resulting RAID-5 VD MUST be equal to the number of extents used in
the RAID-5EE volume reduced by one.

Common RAID DDF Spec. 44
 Revision 1.2

M
ap

pi
ng

 F
un

ct
io

n

Figure 17: RAID-5EE Rotating Parity N with Data Continuation (PRL=25, RLQ=03)

4.2.17 Integrated Adjacent Stripe Mirroring (PRL= 11, RLQ=00)
Figure 18 gives an example of Integrated Adjacent Strip Mirroring. Table 8 gives the indices and
constants used to describe the data layout of this type of RAID in the following formulas.

Common RAID DDF Spec. 45
 Revision 1.2

Table 8: Indices and Constants for Integrated Adjacent Strip Mirroring

In an Integrated Adjacent Stripe Mirroring VD, each virtual_block(x) MUST be stored in two locations.
These two locations are referred to as extent_block (k, i, j) and extent_block’ (k, q, r). The allocation of
data in an Integrated Adjacent Stripe Mirroring VD MUST adhere to the following formulas:

Eq. 55

virtual_block (x) = extent_block (MOD(x/L), MOD(FLOOR(x/L)*2, N), FLOOR(FLOOR(x/L)*2/N))

Eq. 56

virtual_block (x) = extent_block’ (MOD(x/L), MOD((FLOOR(x/L)*2)+1, N), FLOOR(((FLOOR(x/L)*2)+1)/N)

Variable or Index Description Minimum Value Maximum Value

i Index of an extent of a
VD where the primary
copy of a virtual_block
is stored.

0 N-1

j Index of a stripe in a VD 0 (M/N)-1
k Offset of a block from

the beginning of a strip
0 L-1

L Size of a strip in blocks N/A (a fixed value) N/A (a fixed value)
M Number of data blocks

in a VD. M MUST be
evenly divisible by N-1.

N/A (a fixed value) N/A (a fixed value)

N Number of extents in a
VD

N/A (a fixed value) N/A (a fixed value)

q Index of an extent of a
VD where the mirrored
copy of a virtual_block
is stored.

0 N-1

r Index of the stripe
where the mirrored copy
of a virtual_block is
stored

0 (M/N)-1

x Offset of a data block
from the beginning of a
VD

0 M-1

Common RAID DDF Spec. 46
 Revision 1.2

Figure 18: Integrated Adjacent Stripe Mirroring (PRL= 11, RLQ-00)

4.2.18 Integrated Offset Stripe Mirroring (PRL=11, RLQ=01)
Figure 19 gives an example of Integrated Offset Stripe Mirroring. The constants and indices given in
Table 8 also apply for the following formulas that describe the data layout of an Integrated Offset Stripe
Mirroring VD. Each virtual_block (x) MUST be stored in two locations. These two locations are referred to
as extent_block (k, i, j) and extent_block’ (k, q, r). The allocation of data in an Integrated Offset Stripe
Mirroring VD MUST adhere to the following formulas:

Common RAID DDF Spec. 47
 Revision 1.2

Eq. 57

virtual_block (x) = extent_block (MOD(x/L), MOD(FLOOR(x/L), N), FLOOR(FLOOR(x/L)/N))*2)

Eq. 58

virtual_block (x) = extent_block’ (MOD(x/L), MOD(FLOOR(x/L)+1, N), (FLOOR(FLOOR(x/L)/N)*2)+1)

Common RAID DDF Spec. 48
 Revision 1.2

Extent 0

Virtual Disk

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3
 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7
 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11
 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 1 Extent 2 Extent 3 Extent 4

Stripe 0

Depth

Stripe 1

Depth

Extent Stripe Length

M
ap

pi
ng

 F
un

ct
io

n

Stripe 2

Depth

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11

 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

 Data Block 36
 Data Block 37
 Data Block 38
 Data Block 39

Stripe 3

Depth
 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

 Data Block 36
 Data Block 37
 Data Block 38
 Data Block 39

Strip (0,0)

Strip (0,1)

Strip (0,2)

Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0)

Strip (1,1) Strip (2,1) Strip (3,1) Strip (4,1)

Strip (1,2) Strip (2,2) Strip (3,2) Strip (4,2)

Strip (0,3) Strip (1,3) Strip (2,3) Strip (3,3) Strip (4,3)

Figure 19: Integrated Offset Stripe Mirroring (PRL= 11, RLQ=01)

4.2.19 RAID 6 Rotating Parity 0 with Data Restart (PRL=06, RLQ=01)
The following table defines the variables and indices that are required to describe the RAID-6 data layout
and parity computation.

Common RAID DDF Spec. 49
 Revision 1.2

Table 9: Indices and Constants for RAID-6 Rotating Parity 0 and N

Variable or Index Description Minimum Value Maximum Value

i Index of an extent of a
VD

0 N-1

j Index of a stripe in a VD 0 FLOOR(FLOOR((M-
1)/L)/(N-2))

k Offset of a block from
the beginning of a strip.

0 L-1

L Size of a strip in blocks. N/A (a fixed value) N/A (a fixed value)

M Number of data blocks
in a VD. M MUST be
evenly divisible by (N-
2)*L.

N/A (a fixed value) N/A (a fixed value)

N Number of extents in a
VD.

N/A (a fixed value) N/A (maximum of 255)

b Index of a byte in an
extent block.

0 Block Size - 1 (a fixed
value of 511).

F Maximum number of
simultaneous disk
failures tolerated.

2 2

p Index of the extent on
which parity P for a
given stripe resides.

0 N-1

q Index of the extent on
which parity Q for a
given byte stripe
resides.

0 N-1

Z The polynomial used to
generate the Galois field
elements (required for
parity computation).

N/A (a constant value) N/A (a constant value)

Ki The ith Galois field
element enumerated in
Table 10.

See Table 10 See Table 10

The number of simultaneous disk failures supported (F) determines the number of parity elements that
must be computed. For example, a RAID 6 sub-system that tolerates 2 simultaneous disk failures MUST
compute two parity elements: P and Q.

Figure 20 gives an example of RAID-6 called Rotating Parity 0 with Data Restart. The indices and
constants provided in Table 9 are valid for this type of RAID.

Common RAID DDF Spec. 50
 Revision 1.2

Extent 0

Virtual Disk

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3
 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7
 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11
 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 1 Extent 2 Extent 3 Extent 4

Stripe 0

Depth

Strip (0,0) Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0)

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

Stripe 1

Depth

Strip (0,1) Strip (1,1) Strip (2,1) Strip (3,1) Strip (4,1)

Extent Stripe Length

M
ap

pi
ng

 F
un

ct
io

n

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

Stripe 2

Depth

Strip (1,2) Strip (2,2) Strip (3,2) Strip (4,2)Strip (0,2)

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11

Parity P (0,0,0)
Parity P (1,0,0)
Parity P (2,0,0)
Parity P (3,0,0)

Parity P (0,1,1)
Parity P (1,1,1)
Parity P (2,1,1)
Parity P (3,1,1)

Parity P (0,2,2)
Parity P (1,2,2)
Parity P (2,2,2)
Parity P (3,2,2)

Parity Q (0,1,0)
Parity Q (1,1,0)
Parity Q (2,1,0)
Parity Q (3,1,0)

Parity Q (0,2,1)
Parity Q (1,2,1)
Parity Q (2,2,1)
Parity Q (3,2,1)

Parity Q (0,3,2)
Parity Q (1,3,2)
Parity Q (2,3,2)
Parity Q (3,3,2)

Figure 20: RAID 6 Rotating Parity 0 with Data Restart (PRL=06, RLQ=01)

The stripe j on which a virtual block x resides MUST adhere to the following formula:

Common RAID DDF Spec. 51
 Revision 1.2

Eq. 59

j = (FLOOR ((FLOOR(x/L))/(N-2))

The extent p on which the parity P for a given stripe j resides MUST adhere to the following formula:

Eq. 60

p = MOD (FLOOR ((FLOOR (x/L))/(N-2)), N)

The extent q on which the parity Q for a given stripe j resides must adhere to the following formula:

Eq. 61

q = MOD (1+p, N)

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Eq. 62

IF MOD (FLOOR (x/L), N-2) < p

THEN {

 i = MOD (FLOOR (x/L), N-2)

 IF p+2 > N

THEN i = i + MOD (p+2, N)

}

ELSE

 i = MOD (FLOOR (x/L), N-2) + 2

The allocation of data blocks in a Rotating Parity 0 with Data Restart VD MUST adhere to the following
formula:

Eq. 63

virtual_block (x) = extent_block (MOD(x, L), i, j)

The values of the parity P and Q MUST be computed according to the following formula:

Eq. 64

Parity P (k, p, j) = ⊕
≠≠−

=

qipiN

i

,,1

0
 extent_block (k,i, j).

The operator ⊕ refers to bit-wise XOR of the operands.

Common RAID DDF Spec. 52
 Revision 1.2

Eq. 65

Parity_Byte Q (b,k,q,j) = ∑ ≠≠−=

=

qipiNi

i

,,1

0
Ki ⊗ extent_block_byte (b,k,q,j)

The operators ∑ and ⊗ refers to Galois field addition and Galois field multiplication respectively. The
value for constant Ki MUST adhere to the following formula:

Eq. 66

Ki = GFILOG(i)

Eq. 67

Parity Q (k,q,j) = ∀
<

=

512

0

b

b
Parity_Byte Q (b,k,q,j)

Notes:

1. The notation ∀ implies that Parity Q (k,q,j) is a sequential enumeration of the Parity_Byte Q
(b,k,q,j), where b ranges from 0 to the block size -1 (i.e., 511).

2. Function extent_block_byte (b,k,i,j) returns the bth byte of an extent_block (k,i,j).

4.2.19.1 Parity Re-computation on Block Update

If a data block is updated at byte index b of an extent u, the equations for P and Q parity re-computation
MUST be as follows:

Eq. 68

Parity Pnew = extent_block_byte(b,k,p,j) ⊕ old_extent_block_byte(b,k,u,j) ⊕
new_extent_block_byte(b,k,u,j)

Eq. 69

Parity Qnew = extent_block_byte(b,k,q,j) ⊕Ku ⊗ old_extent_block_byte(b,k,u,j) ⊕Ku ⊗
new_extent_block_byte(b,k,u,j)

Where Ku = GFILOG(u) and ⊗ refers to Galois multiplication operation. Pnew and Qnew MUST be re-
computed for every byte index b updated in the extent u.

4.2.19.2 Galois Field Operations

This section describes how the Galois field operations MUST be defined to calculate Parity Q for the
RAID 6 algorithms described in Sections 4.2.19, 4.2.20, and 4.2.21.

Common RAID DDF Spec. 53
 Revision 1.2

4.2.19.2.1 GFILOG () Function (Z = 0x11D)

The following table lists the Galois field elements generated from the polynomial 0x11D.

Table 10: Galois Field Elements for Polynomial 0x11D

SS GGFFIILLOOGG((00xxRRSS))
00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

00 11 22 44 88 1100 2200 4400 8800 11DD 33AA 7744 EE88 CCDD 8877 1133 2266
11 44CC 9988 22DD 55AA BB44 7755 EEAA CC99 88FF 0033 0066 00CC 1188 3300 6600 CC00
22 99DD 2277 44EE 99CC 2255 44AA 9944 3355 66AA DD44 BB55 7777 EEEE CC11 99ff 2233
33 4466 88CC 0055 00AA 1144 2288 5500 AA00 55DD BBAA 6699 DD22 BB99 66FF DDEE AA11
44 55FF BBEE 6611 CC22 9999 22FF 55EE BBCC 6655 CCAA 8899 00FF 11EE 33CC 7788 FF00
55 FFDD EE77 DD33 BBBB 66BB DD66 BB11 77FF FFEE EE11 DDFF AA33 55BB BB66 7711 EE22
66 DD99 AAFF 4433 8866 1111 2222 4444 8888 00DD 11AA 3344 6688 DD00 BBDD 6677 CCEE
77 8811 11FF 33EE 77CC FF88 EEDD CC77 9933 33BB 7766 EECC cc55 9977 3333 6666 CCCC
88 8855 1177 22EE 55CC BB88 66DD DDAA AA99 44FF 99EE 2211 4422 8844 1155 22AA 5544
99 AA88 44DD 99AA 2299 5522 AA44 5555 AAAA 4499 9922 3399 7722 EE44 DD55 BB77 7733
AA EE66 DD11 BBFF 6633 CC66 9911 33FF 77EE FFCC EE55 DD77 BB33 77BB FF66 FF11 FFFF
BB EE33 DDBB AABB 44BB 9966 3311 6622 CC44 9955 3377 66EE DDCC AA55 5577 AAEE 4411
CC 8822 1199 3322 6644 CC88 88DD 0077 00EE 11CC 3388 7700 EE00 DDDD AA77 5533 AA66
DD 5511 AA22 5599 BB22 7799 FF22 FF99 EEFF CC33 99BB 22BB 5566 AACC 4455 88AA 0099
EE 1122 2244 4488 9900 33DD 77AA FF44 FF55 FF77 FF33 FFBB EEBB CCBB 88BB 00BB 1166

RR

FF 22CC 5588 BB00 77DD FFAA EE99 CCFF 8833 11BB 3366 66CC DD88 AADD 4477 88EE XXXX

Note: The values within Table 10 are hexadecimal values.

GFILOG(0xFF) is undefined and represented as XX. Here are two examples of how to apply Table 10:

GFILOG(0x8C) = 0x84,

GFILOG(0x21) = 0x27.

4.2.19.2.2 GFLOG() Function (Z = 0x11D)

The following table lists the logarithmic value of the Galois field elements.

Common RAID DDF Spec. 54
 Revision 1.2

Table 11: Log of Galois Field Elements for Polynomial 0x11D

SS GGFFLLOOGG((00xxRRSS))
00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

00 XXXX 0000 0011 1199 0022 3322 11AA CC66 0033 DDFF 3333 EEEE 11BB 6688 CC77 44BB

11 0044 6644 EE00 00EE 3344 88DD EEFF 8811 11CC CC11 6699 FF88 CC88 0088 44CC 7711

22 0055 88AA 6655 22FF EE11 2244 00FF 2211 3355 9933 88EE DDAA FF00 1122 8822 4455

33 11DD BB55 CC22 77DD 66AA 2277 FF99 BB99 CC99 99AA 0099 7788 44DD EE44 7722 AA66

44 0066 BBFF 88BB 6622 6666 DDDD 3300 FFDD EE22 9988 2255 BB33 1100 9911 2222 8888

55 3366 DD00 9944 CCEE 88FF 9966 DDBB BBDD FF11 DD22 1133 55CC 8833 3388 4466 4400

66 11EE 4422 BB66 AA33 CC33 4488 77EE 66EE 66BB 33AA 2288 5544 FFAA 8855 BBAA 33DD

77 CCAA 55EE 99BB 99FF 00AA 1155 7799 22BB 44EE DD44 EE55 AACC 7733 FF33 AA77 5577

88 0077 7700 CC00 FF77 88CC 8800 6633 00DD 6677 44AA DDEE EEDD 3311 CC55 FFEE 1188

99 EE33 AA55 9999 7777 2266 BB88 BB44 77CC 1111 4444 9922 DD99 2233 2200 8899 22EE

AA 3377 33FF DD11 55BB 9955 BBCC CCFF CCDD 9900 8877 9977 BB22 DDCC FFCC BBEE 6611

BB FF22 5566 DD33 AABB 1144 22AA 55DD 99EE 8844 33CC 3399 5533 4477 66DD 4411 AA22

CC 11FF 22DD 4433 DD88 BB77 77BB AA44 7766 CC44 1177 4499 EECC 77FF 00CC 66FF FF66

DD 66CC AA11 33BB 5522 2299 99DD 5555 AAAA FFBB 6600 8866 BB11 BBBB CCCC 33EE 55AA

EE CCBB 5599 55FF BB00 99CC AA99 AA00 5511 00BB FF55 1166 EEBB 77AA 7755 22CC DD77

RR

FF 44FF AAEE DD55 EE99 EE66 EE77 AADD EE88 7744 DD66 FF44 EEAA AA88 5500 5588 AAFF

Note: The values within Table 11 are hexadecimal values.

GFLOG(0x00) is undefined and represented as XX. Here are three examples of how to apply Table 11.

GFLOG(0x01) = 0x00,

GFLOG(0xF9) = 0xD6,

GFLOG(0x94) = 0x26.

4.2.19.2.3 Galois Field Addition (∑)

The Galois field addition operation is defined as the bitwise XOR (⊕) of the operands. For example,

Eq. 70

∑ (0x22, 0x33, 0x44) = (0x22 ⊕ 0x33 ⊕ 0x44) = 0x55.

4.2.19.2.4 Galois Field Multiplication (⊗)

The Galois field multiplication (a ⊗ b) is defined as:

Eq. 71

GFILOG (MOD (GFLOG (a) + GFLOG (b), 0xFF)).

Note: Integer addition applies within Eq. 71.

Common RAID DDF Spec. 55
 Revision 1.2

Refer Section 4.2.19.2.2 and Section 4.2.19.2.1 for the definitions of functions GFLOG() and GFILOG()
respectively. For example,

a) 0x33 ⊗ 0x44 = GFILOG (MOD (0x7D + 0x66, 0xFF)) = GFILOG (0xE3) = 0x90

b) 0x08 ⊗ 0x54 = GFILOG (MOD (0x03 + 0x8F, 0xFF)) = GFILOG (0x92) = 0x9A

4.2.20 RAID 6 Rotating Parity N with Data Restart (PRL=06, RLQ=02)
Figure 21 gives an example of an implementation of RAID-6 called Rotating Parity N with Data Restart.
The indices and constants provided in Table 9 are valid for this type of RAID.

Common RAID DDF Spec. 56
 Revision 1.2

Extent 0

Virtual Disk

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3
 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7
 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11
 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

Extent 1

 Data Block 0
 Data Block 1
 Data Block 2
 Data Block 3

Extent 2

 Data Block 4
 Data Block 5
 Data Block 6
 Data Block 7

Extent 3

 Data Block 8
 Data Block 9
 Data Block 10
 Data Block 11

Extent 4

Parity Q (0,4,0)
Parity Q (1,4,0)
Parity Q (2,4,0)
Parity Q (3,4,0)

Stripe 0

Depth

 Data Block 20
 Data Block 21
 Data Block 22
 Data Block 23

 Data Block 12
 Data Block 13
 Data Block 14
 Data Block 15

 Data Block 16
 Data Block 17
 Data Block 18
 Data Block 19

Parity Q (0,3,1)
Parity Q (1,3,1)
Parity Q (2,3,1)
Parity Q (3,3,1)

Stripe 1

Depth

Extent Stripe Length

M
ap

pi
ng

 F
un

ct
io

n

 Data Block 24
 Data Block 25
 Data Block 26
 Data Block 27

 Data Block 32
 Data Block 33
 Data Block 34
 Data Block 35

Parity Q (0,2,2)
Parity Q (1,2,2)
Parity Q (2,2,2)
Parity Q (3,2,2)

Stripe 2

Depth

Strip (0,0)

Strip (0,1)

Strip (0,2)

Strip (1,0) Strip (2,0) Strip (3,0) Strip (4,0)

Strip (1,1) Strip (2,1) Strip (3,1) Strip (4,1)

Strip (1,2) Strip (2,2) Strip (3,2) Strip (4,2)
 Data Block 28
 Data Block 29
 Data Block 30
 Data Block 31

Parity P (0,3,0)
Parity P (1,3,0)
Parity P (2,3,0)
Parity P (3,3,0)

Parity P (0,2,1)
Parity P (1,2,1)
Parity P (2,2,1)
Parity P (3,2,1)

Parity P (0,1,2)
Parity P (1,1,2)
Parity P (2,1,2)
Parity P (3,1,2)

Figure 21: Rotating Parity N with Data Restart (PRL=06, RLQ=02)

The stripe j on which a virtual block x resides MUST adhere to the following formula:

Common RAID DDF Spec. 57
 Revision 1.2

Eq. 72

j = (FLOOR ((FLOOR(x/L)) / (N-2))

The extent p on which the parity P for a given stripe j resides must adhere to the following formula:

Eq. 73

p= (N-1) - (MOD (FLOOR ((FLOOR(x/L)) / (N-2) + 1), N))

The extent q on which the parity Q for a given stripe j resides must adhere to the following formula:

q = MOD (1+p, N)

The extent i on which a given block x resides MUST adhere to the following formula:

Eq. 74

IF MOD (FLOOR (x/L), N-2) < p

 THEN {

i = MOD (FLOOR (x/L), N-2)

IF p+2 > N

THEN i = i + MOD (p+2, N)

}

ELSE

i = MOD (FLOOR (x/L), N-2) + 2

The allocation of data blocks in a Rotating Parity N with Data Restart VD MUST adhere to the following
formula:

Eq. 75

virtual_block (x) = extent_block (MOD(x, L), i, j)

The values of the parity P and Q MUST be computed according to the following formula:

Eq. 76

Parity P (k,p,j) = ⊕
≠≠−

=

qipiN

i

,,1

0
 extent_block (k,i,j)

and the operator ⊕ refers to bit-wise XOR of the operands.

Eq. 77

Parity_Byte Q (b,k,q,j) = ∑ ≠≠−=

=

qipiNi

i

,,1

0
 Ki ⊗ extent_block_byte (b,k,i,j)

Common RAID DDF Spec. 58
 Revision 1.2

The operators ∑ and ⊗ refer to Galois field addition and Galois field multiplication respectively. The
value for constant Ki is arrived as:

Eq. 78

Ki = GFILOG(i).

Eq. 79

Parity Q (k,q,j) = ∀
<

=

512

0

b

b
Parity_Byte Q (b,k,q,j)

 Notes:

1. The notation ∀ implies that Parity Q (k,q,j) is a sequential enumeration of the Parity_Byte Q
(b,k,q,j), where b ranges from 0 to the block size -1 (i.e., 511).

2. Function extent_block_byte (b,k,i,j) returns the bth byte of an extent_block (k,i,j).

4.2.20.1 Parity Re-computation on Block Update

If a data block is updated at byte index b of an extent u, the equations for P and Q parity re-computation
MUST be as follows:

Eq. 80

Parity Pnew = extent_block_byte(b,k,p,j) ⊕ old_extent_block_byte(b,k,u,j) ⊕
new_extent_block_byte(b,k,u,j)

Eq. 81

Parity Qnew = extent_block_byte(b,k,q,j) ⊕Ku ⊗ old_extent_block_byte(b,k,u,j) ⊕Ku ⊗
new_extent_block_byte(b,k,u,j)

Where Ku = GFILOG(u) and ⊗ refers to Galois multiplication operation. Pnew and Qnew MUST be re-
computed for every byte index b updated in the extent u.

4.2.20.2 Galois Field Operations

The Galois field operations that MUST be used to calculate Parity Q for the RAID 6 algorithm described in
Section 4.2.20 are the same as the Galois field operations described in 4.2.19.2.

4.2.21 RAID 6 Rotating Parity N with Data Continuation (PRL=06, RLQ=03)

Common RAID DDF Spec. 59
 Revision 1.2

Figure 22: Rotating Parity N with Data Continuation (PRL=06, RLQ=03)

Figure 22 gives an example of an implementation of RAID-6 called Rotating Parity N with Data
Continuation. The indices and constants provided in Table 9 are valid for this type of RAID.

Common RAID DDF Spec. 60
 Revision 1.2

The stripe j on which a virtual block x resides MUST adhere to the following formula:

Eq. 82

j = (FLOOR ((FLOOR(x/L)) / (N-2))

The extent p on which the parity P for a given stripe j resides must adhere to the following formula:

Eq. 83

p = (N-1) - MOD(j,N).

The extent q on which the parity Q for a given stripe j resides must adhere to the following formula:

q = MOD((p-1),N).

The extent i on which a given virtual block x resides MUST adhere to the following formula:

Eq. 84

i = MOD(MOD(FLOOR(x/L),N-2)+p+1,N).

The allocation of data blocks in a RAID-6 Rotating Parity N with Data Restart VD MUST adhere to the
following formula:

Eq. 85

virtual_block(x) = extent_block(MOD(x/L), i, j).

The values of the parity P and Q MUST be computed according to the following formula:

Eq. 86

Parity P (k,p,j) = ⊕
≠≠−

=

qipiN

i

,,1

0
 extent_block (k,i,j)

and the operator ⊕ refers to bit-wise XOR of the operands.

Eq. 87

Parity_Byte Q (b,k,q,j) = ∑ ≠≠−=

=

qipiNi

i

,,1

0
 Ki ⊗ extent_block_byte (b,k,i,j)

The operators ∑ and ⊗ refer to Galois field addition and Galois field multiplication respectively. The
value for constant Ki is arrived as:

Eq. 88

Ki = GFILOG(i).

Common RAID DDF Spec. 61
 Revision 1.2

Eq. 89

Parity Q (k,q,j) = ∀
<

=

512

0

b

b
Parity_Byte Q (b,k,q,j)

Notes:

1. The notation ∀ implies that Parity Q (k,q,j) is a sequential enumeration of the Parity_Byte Q
(b,k,q,j), where b ranges from 0 to the block size -1 (i.e., 511).

2. Function extent_block_byte (b,k,i,j) returns the bth byte of an extent_block (k,i,j).

4.2.21.1 Parity Re-computation on Block Update

If a data block is updated at byte index b of an extent u, the equations for P and Q parity re-computation
MUST be as follows:

Eq. 90

Parity Pnew = extent_block_byte(b,k,p,j) ⊕ old_extent_block_byte(b,k,u,j) ⊕
new_extent_block_byte(b,k,u,j)

Eq. 91

Parity Qnew = extent_block_byte(b,k,q,j) ⊕Ku ⊗ old_extent_block_byte(b,k,u,j) ⊕Ku ⊗
new_extent_block_byte(b,k,u,j)

Where Ku = GFILOG(u) and ⊗ refers to Galois multiplication operation. Pnew and Qnew MUST be re-
computed for every byte index b updated in the extent u.

4.2.21.2 Galois Field Operations

The Galois field operations that MUST be used to calculate Parity Q for the RAID 6 algorithm described in
Section 4.2.21 are the same as the Galois field operations described in 4.2.19.2.

4.3 Secondary RAID Level
Table 12 lists values used in the Secondary_RAID_Level field of the Virtual Disk Configuration Record
(Section 5.9.1) and their definitions. The table defines secondary RAID levels such as Striped, Volume
Concatenation, Spanned, and Mirrored for hybrid or multilevel virtual disks. The Secondary_RAID_Level
field in the Virtual Disk Configuration Record MUST use the values defined in Table 12.

Common RAID DDF Spec. 62
 Revision 1.2

Table 12: Secondary RAID Levels

Name SRL
Byte

Description

Striped 00 Data is striped across Basic VDs. First strip stored on first BVD and
next on next BVD.
NOTE: BVD sequence is determined by the Secondary_Element_Seq
field in the Virtual Disk Configuration Record (Section 5.9.1).

Mirrored 01 Data is mirrored across Basic VDs.
Concatenated 02 Basic VDs combined head to tail.
Spanned 03 A combination of stripping and concatenations involving Basic VDs of

different sizes.
NOTE: BVD sequence is determined by the Secondary_Element_Seq
field in the Virtual Disk Configuration Record (Section 5.9.1).

4.3.1 Striped Secondary RAID Level (SRL=00)
In a VD with a Striped Secondary RAID Level, the data MUST be striped across basic virtual disks. The
BVDs MUST have an equal number of user addressable data strips. The BVDs are not required to have
the same Primary RAID Level (Section 4.1), RAID Level Qualifier (Section 4.2), or capacity. Table 13
gives the indices and constants used in the description of a Striped Secondary RAID Level (Striped SRL)
VD.

Table 13: Indices and Constants for Striped Secondary RAID Level

The Striped Secondary RAID level introduces the concept of a stripe_block. Since BVDs in a Striped SRL
VD can have different strip sizes, it is more economical to represent a block’s offset from the beginning of
a stripe rather than from the beginning of a strip on a specific BVD. A stripe_block uses the indices q and
j to identify its position (i.e., stripe_block(q,j))

Variable or Index Description Minimum Value Maximum Value

i Index of a BVD of in a
striped VD

0 N-1

j Index of a stripe in a VD 0 J-1
q Offset of a data block

from the beginning of a
stripe

0 S-1

Li Size of a strip in blocks
on BVD i

Equal to the stripe depth
of BVD i’s Primary RAID

Level

Equal to the stripe depth
of a BVD i’s Primary

RAID Level
M Number of blocks in a

VD
N/A (a fixed value) N/A (a fixed value)

N Number of BVDs in a
striped VD

N/A (a fixed value) N/A (a fixed value)

J Number of stripes M/S M/S
S Size of a stripe in a

striped VD ∑
−

=

=
1

0

N

i
iLS ∑

−

=

=
1

0

N

i
iLS

x Offset of a data block
from the beginning of a
VD

0 M-1

Common RAID DDF Spec. 63
 Revision 1.2

The size of a stripe on a Striped SRL VD MUST adhere to the following formula:

Eq. 92

∑
−

=

=
1

0

N

i
iLS

The number of stripes J is equal to M/S. The user addressable data MUST be distributed according to the
following formula:

Eq. 93

virtual_block(x) = stripe_block(MOD(x, S), FLOOR(x, S))

Figure 23 gives an example of a VD with a Striped Secondary RAID Level. In this example L0 = 4, L1 = 2,
L2 = 3, L3 = 4, and L4 = 3. Thus, S = 16.

Common RAID DDF Spec. 64
 Revision 1.2

Figure 23: Striped Secondary RAID Level (SRL=00)

4.3.2 Mirrored Secondary RAID Level (SRL=01)
In a VD with a Mirrored Secondary RAID Level, the data MUST be mirrored across basic virtual disks.
Figure 24 gives an example of a VD with a Mirrored Secondary RAID Level. Each data block of the virtual
disk (virtual_block(x)) MUST be stored at the same user addressable data offset in each BVD.

Common RAID DDF Spec. 65
 Revision 1.2

Figure 24: Mirrored Secondary RAID Level (SRL=01)

4.3.3 Concatenated Secondary RAID Level (SLR=02)
In a VD with a Concatenated Secondary RAID Level, the user addressable data space is created by
combining the user addressable data spaces of the BVDs making up the VD. The BVDs act as extents for
the VD and are called BVD extents. The BVDs are combined in a head to tail fashion. The BVDs are not
required to have the same addressable data space.

Figure 25 gives an example of a Concatenated VD with three BVD extents. Table 14 gives the indices
and constants used in the formulas below

To represent a specific block in a specific BVD the following notation is used:

bvd_extent_block (y, i).

Common RAID DDF Spec. 66
 Revision 1.2

The allocation of data MUST adhere to the following equations.

Eq. 94

IF x = 0

THEN virtual_block (0) = bvd_extent_block (0, 0)

ELSE IF x = M-1

THEN virtual_block (x) = bvd_extent_block (CN-1-1, N-1)

ELSE IF virtual_block (x-1) = bvd_extent_block (Ci-1, i)

THEN virtual_block (x) = bvd_extent_block (0, i+1)

ELSE IF virtual_block (x-1) = bvd_extent_block (y-1, i)

THEN virtual_block (x) = bvd_extent_block (y, i)

Table 14: Indices and Constants for Concatenated Secondary RAID Level VDs

Variable or Index Description Minimum Value Maximum Value

i Index of a BVD extent of
a VD

0 N-1

M Number of data blocks
in a VD

N/A (a fixed value) N/A (a fixed value)

N Number of BVDs acting
as extents in a VD with
a Concatenated
Secondary RAID Level

N/A (a fixed value) N/A (a fixed value)

Ci Number of data blocks
in BVD i

N/A (a fixed value) N/A (a fixed value)

x Offset of a data block
from the beginning of
the VD

0 M-1

y Offset of a data block
from the beginning of a
BVD extent

0 M-1

Common RAID DDF Spec. 67
 Revision 1.2

Figure 25: Concatenated Secondary RAID Level (SRL=02)

4.3.4 Spanned Secondary RAID Level (SRL=03)
In VD with a Spanned Secondary RAID Level, the user addressable data space is created by a
combination of stripping and concatenation of the user addressable data spaces of the BVDs making up
the VD. The BVDs can be in any order. They can have different capacities, different RAID levels and
different strip sizes. Unlike the Striped Secondary RAID Level, the BVDs do not have to have the same
number of user addressable data strips. Table 15 gives the indices and constants used in the description
of a Spanned Secondary RAID Level (Spanned SRL) VD.

The size of stripe j MUST be determined using the following formula:

Eq. 95

Sj = ∑
−

=

1

0

N

i

{IF Ji ≥ j THEN Li ELSE 0 }.

The total number of user addressable data blocks included in stripes 0 through j is:

Common RAID DDF Spec. 68
 Revision 1.2

Eq. 96

Tj = ∑
=

j

v 0

Sv

The Spanned SRL VD is also described using the stripe_block(q, j) concept (Section 4.3.1). The user
addressable data in a Spanned SRL VD MUST be distributed according to the following formula.

Eq. 97

virtual_block(x) = stripe_block(x – Tu, u + 1),

where Tu is the largest value of Tj less than or equal to x.

Table 15: Indices and Constants for Spanned Secondary RAID Level

Figure 26 gives an example of a Spanned SRL VD with five BVDs.

Variable or Index Description Minimum Value Maximum Value

i Index of a BVD of in a
spanned VD

0 N-1

j Index of a stripe in a VD 0 J-1
q Offset of a data block

from the beginning of a
stripe

0 S-1

Li Size of a strip in blocks
on BVD i

Equal to the stripe depth
of BVD i’s Primary RAID

Level

Equal to the stripe depth
of a BVD i’s Primary

RAID Level
M Number of blocks in a

VD
N/A (a fixed value) N/A (a fixed value)

N Number of BVDs in a
striped VD

N/A (a fixed value) N/A (a fixed value)

Ji Number of stripes in on
BVD i

N/A (a fixed value
determined by BVD i’s
Primary RAID Level

parameters)

N/A (a fixed value
determined by BVD i’s
Primary RAID Level

parameters)
Sj Size of a stripe j on a

Spanned VD Sj = ∑
−

=

1

0

N

i

{IF Ji ≥ j

THEN Li ELSE 0 }

Sj = ∑
−

=

1

0

N

i

{IF Ji ≥ j

THEN Li ELSE 0 }
Tj Number of blocks in

stripes 0 through j Tj = ∑
=

j

v 0

Sv Tj = ∑
=

j

v 0

Sv

x Offset of a data block
from the beginning of a
VD

0 M-1

Common RAID DDF Spec. 69
 Revision 1.2

Figure 26: Spanned Secondary RAID Level (SRL=03)

Common RAID DDF Spec. 70
 Revision 1.2

5 DDF Structure

5.1 DDF Structure Overview
A DDF structure MUST reside on every physical disk that participates in a RAID configuration in a RAID
storage subsystem. A minimum of 32MB MUST be reserved on each physical disk for a DDF structure.
The last block of the reserved space MUST be the last addressable block of the physical disk.

Figure 27: DDF Structure

Figure 27 illustrates the conceptual format of the DDF Structure on a physical disk with M
addressable blocks. The DDF structure contains nine section types that are listed in Table 16.

Common RAID DDF Spec. 71
 Revision 1.2

Table 16: DDF Sections

Contents Context

DDF Header Global
Controller Data Global
Physical Disk Records Global
Virtual Disk Records Global
Configuration Records Local
Physical Disk Data Local
Bad Block Management Log Local
 Diagnostic Space Local
Vendor Specific Logs Vendor specific

The DDF Header section has three types. The Anchor DDF Header MUST be stored at the end of the
physical disk. The last block of the Anchor DDF Header MUST be the last addressable block on a
physical disk. The Anchor DDF Header contains a pointer to the Primary DDF Header. If DDF structure
redundancy is implemented, the Anchor DDF Header also contains a pointer to the Secondary DDF
Header.

Figure 27 shows a DDF structure with redundant entries. Redundancy is OPTIONAL but if it is
implemented the values of all fields in all section types except DDF Header sections MUST be equal in
both the primary and secondary locations. Furthermore, the offset of the beginning of secondary sections
from the start of the Secondary DDF Header MUST be equal to the offset of the beginning of the primary
sections from the start of the Primary DDF Header. There MUST be only one DDF structure stored on a
disk. The disk MUST not be partitioned using a partition table or another mechanism. The partitioning of
capacity is handled by the DDF structure using the concept of Virtual Disks. The term DDF structure
includes the Anchor DDF Header, the Primary DDF Header, the Secondary DDF Header, and all DDF
Sections described in Table 16.

Signatures and CRCs are used to delineate the sections of the DDF structure. Sequence numbers are
used to manage transitions during configuration and the change/update process. Timestamps are used to
provide chronological hints. Configuration groups, Controllers, Physical Disks and Virtual Disks are
uniquely identified by using “Globally Unique IDs” (GUIDs).

The size of sections like Physical Disk Records, Virtual Disk Records and Configuration Records can vary
based on the maximum number of physical disks (PDs), virtual disks and the maximum number of
physical disks configurable within a virtual disk (PD per VD) a given implementation supports. This makes
the DDF structure size variable.

A minimum of 32MB (65536 blocks) MUST be reserved on each physical disk to accommodate redundant
DDF sections, optional spare blocks, and vendor specific logs or work space. It is NOT RECOMMENDED
that redundant copies of DDF be placed adjacent to each other.

5.2 Byte Ordering
Each section of the DDF MUST be stored in big-endian format (i.e., the more significant bytes of the
section are stored in lower addresses in relation to bytes of lesser significance). Figure 28 gives
examples of the ordering of bytes in multi-byte fields.

Common RAID DDF Spec. 72
 Revision 1.2

Figure 28: Byte Ordering in Multi-Byte Fields

Multiple character ASCII strings are left justified when stored in multi-byte fields (i.e., the first character in
the string is stored in the MSB of a multi-byte field). If an ASCII string has fewer characters than
maximum allowed by the field in which it is to be stored, all unused bytes in the field MUST be filled with
the ASCII character for “space.” Figure 29 gives the example of the 4-byte ASCII string “ABCD” stored
in a 6-byte field.

Figure 29: ASCII String Justification

Finally, Figure 30 gives an example of the byte ordering in the Controller Data Section of a DDF structure.
The Controller Data Section is defined in Section 5.6 of this document.

Common RAID DDF Spec. 73
 Revision 1.2

7 6 5 4 3 2 1 0
Bit

Byte
0
1
2
3

(MSB)

(LSB)

Controller Data
Signature

4
5
6
7

(MSB)

(LSB)

CRC

8
9

14
15

(MSB)

(LSB)

Vendor ID

16
17

30
31

(MSB)

(LSB)

Serial Number

32
33

(MSB)
(LSB)

34
35

(MSB)
(LSB)

36
37

(MSB)
(LSB)

38
39

(MSB)
(LSB)

PCI Vendor ID

PCI Device ID

PCI Sub Vendor ID

PCI Sub Device ID

Controller GUID

Controller Type

40
41

62
63

Reserved

64
65

510
511

(MSB)

(LSB)

Vendor Unique
Controller Data

Figure 30: Controller Data Byte Ordering Example

5.3 Signatures, Timestamps and CRCs
Signatures are unique 32-bit fields indicating the start of different sections in the DDF structure. Table 17
lists the signatures used by the DDF structure.

Common RAID DDF Spec. 74
 Revision 1.2

Table 17: DDF Signatures

Signature Name Signature Value Notes
DDF_Header 0xDE11DE11
Controller_Data 0xAD111111
Physical_Disk_Records 0x22222222
Physical_Disk_Data 0x33333333
Virtual_Disk_Records 0xDDDDDDDD
VD_Configuration_Record 0xEEEEEEEE
Spare_Assignment_Record 0x55555555
VU_Configuration_Record 0x88888888
Vendor_Specific_Log 0x01DBEEF0
Bad_Block_Management_Log 0xABADB10C

Timestamps are used to provide chronological hints for a number of DDF structures. A timestamp MUST
be the number of seconds that have occurred since midnight GMT of January 1, 1980 and the time the
timestamp is created.

The CRC MUST be calculated for a given structure with 0xFFFFFFFF as the initial and default value for
the CRC field in the structure. The CRC MUST calculated according to the CRC-32 algorithm described in
ISO 3309 and in section 8.1.1.6.2 of ITU-T V.42. The CRC MUST be calculated using following
polynomial:

X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X+1.

Once the CRC is calculated, the calculated value MUST replace the 0xFFFFFFFF stored in the CRC field
during calculation.

5.4 GUIDs
The Globally Unique Identifier (GUID) is a structure used to uniquely identify the Controllers, Physical and
Virtual Disks. It MUST be 24 bytes in length. A valid GUID MUST NOT use the values 0x20, 0x00 and
0xFF in Byte0 (MSB). These values in Byte 0 are reserved.

5.4.1 Controller GUID
The Controller GUID MUST be an ASCII string built by combining the T10 Vendor ID and the last 16
characters from the controller serial number. Information on T10 Vendor IDs and how to obtain one can
be found at the T10 website (www.t10.org). Following is an example of a controller GUID, where the
controller serial number is “11-10800BE10318” and the vendor name is “VendorID”,

V E N D O R I D 1 1 - 1 0 8 0 0 B E 1 0 3 1 8
0 7 8 23

If the T10 Vendor ID is less than eight characters or the controller serial number is less than 16
characters, the fields MUST be padded by ‘space’ (0x20) to achieve the required length. Padding MUST
be placed between the vendor name and serial number.

Common RAID DDF Spec. 75
 Revision 1.2

NOTE: If there is no serial number defined for the controller, then the 16 byte serial number field MUST
be built by concatenating an 8-byte ASCII representation of a 4-byte timestamp (bytes 8-15) and an 8-
byte ASCII representation of a 4-byte random number (bytes 16-23). This number SHOULD be created
on the first configuration and stored in the controller’s non-volatile memory. This field SHOULD NOT be
user modifiable so that it remains constant for the controller’s life from user’s perspective.

5.4.2 Physical Disk GUID
The Physical Disk (PD) GUID MUST be 24 byte field.

For physical disks that are accessed using SCSI commands (e.g., Parallel SCSI, Serial Attached SCSI,
and Fibre Channel physical disks), the PD GUID MUST be built by combining the T10 Vendor ID of the
disk vendor with the identifier returned by INQUIRY page 83h (Association=0 Identifier Type=1h, 2h, 3h
or 8h) or the serial number returned in EVPD page 80h. If the identifier returned by INQUIRY page 83 or
the disk serial number in EVPD page 80h is longer than 16 bytes, then the 16 least significant bytes
MUST be used and the higher bytes discarded. If the serial number returned by EVPD page 80h is ‘left
justified’ with spaces in the least significant bytes, the serial number MUST be ‘right justified’ before
discarding the higher bytes and using the 16 least significant bytes. If the vendor name is less than eight
characters or the disk serial number/identifier is less than 16 characters, the fields MUST be padded by
‘space’ (0x20) to achieve the required length. Padding MUST be placed between the vendor name and
serial number/identifier. The following is an example of a PD_GUID for a SCSI disk, where the serial
number/identifier is “5G45B673” and the T10 Vendor ID is “HDD.”

H D D 5 G 4 5 B 6 7 3
0 7 8 23

When a serial number or INQUIRY page 83h identifier is not available for physical disks accessed using
SCSI commands or the PD_GUID generated is not unique among the disks accessed by the controller,
the controller MUST generate a forced serial number by concatenating an eight byte current date in
“yyyymmdd” ASCII format and an eight byte hexadecimal ASCII representation of a four byte random
number. The GUID generated using this serial number is considered a forced PD GUID and the
Forced_PD_GUID_Flag in the PD_Type field of the Physical Disk Entry (Section 5.7.1) for the physical
disk MUST be set. In addition, the Forced_PD_GUID_Flag in the disk’s Physical_Disk_Data section
MUST also be set (Section 5.10). The controller MUST guarantee that a Forced PD GUID is unique
among the drives accessed by the controller. The following is an example of a forced PD GUID, where
the date is February 1, 2004, the eight byte hexadecimal ASCII representation of the four byte random
number is “AABBCCDD” and the disk’s T10 Vendor ID is “HDD.”

H D D 2 0 0 4 0 2 0 1 A A B B C C D D
0 7 8 23

For ATA or SATA physical disks, PD_GUID MUST be built by combining the three character ASCII string
“ATA”, with the 20-byte disk serial number as reported in response to Identify Drive ATA command (bytes
20-39). A ‘space’ (0x20) MUST separate the string “ATA” from the disk serial number. The following is
an example of PD_GUID for an ATA disk where the serial number is “BB583GX3389103443379.”

A T A B B 5 8 3 G X 3 3 8 9 1 0 3 4 4 3 3 7 9
0 3 4 23

Common RAID DDF Spec. 76
 Revision 1.2

When a serial number is not available for ATA or SATA physical disks, the controller MUST generate one
by concatenating an eight character current date in “yyyymmdd” ASCII format and a twelve byte
hexadecimal ASCII representation of a six byte random number. The GUID generated using this serial
number is considered a forced PD_GUID and the Force_PD_GUID_Flag in the PD_Type field of the
Physical Disk Entry (Section 5.7.1) for the physical disk MUST be set. In addition, the
Forced_PD_GUID_Flag in the disk’s Physical_Disk_Data section MUST also be set (Section 5.10). The
following is an example of a forced PD GUID, where the date is February 1, 2004 and the twelve byte
hexadecimal ASCII representation of the six byte random number is “AABBCCDDEEFF”

A T A 2 0 0 4 0 2 0 1 A A B B C C D D E E F F
0 3 4 23

5.4.3 Virtual Disk GUID
The VD GUID MUST be built by concatenating the creating controller’s T10 Vendor ID with a 16 byte
unique identifier. The 16 byte identifier MAY be created by concatenating the Controller_Type field from
Controller Data (Section 5.6), a 4-byte timestamp, and a 4-byte random number. Using this method, the
VD_GUID provides data about age and the creating controller type. The following is an example of a
VD_GUID with a vendor ID of “VENDORID”, a Controller_Type field of “AAAAAAAA”, a time stamp of
“BBBB”, and a random number of “CCCC.”

V E N D O R I D A A A A A A A A B B B B C C C C
0 7 8 15 16 19 20 23

Alternatively, the unique identifier MAY be created by the controller using a vendor specific method. If this
method is used, the controller MUST guarantee that the identifier is unique for all virtual disks in the
system.

5.4.4 DDF Header GUID
The DDF Header GUID MUST be built by concatenating the creating controller’s T10 Vendor ID, the
Controller_Type field from Controller Data (Section 5.6), a 4-byte timestamp, and a 4-byte random
number. The DDF_GUID provides data about age and the creating controller type. The following is an
example of a DDF_GUID with a vendor ID of “VENDORID”, a Controller_Type field of “AAAAAAAA”, a
time stamp of “BBBB”, and a random number of “CCCC.”

V E N D O R I D A A A A A A A A B B B B C C C C
0 7 8 15 16 19 20 23

5.5 DDF Header
DDF headers are global in context with respect to disk groups or related physical disks. Three types of
DDF header are defined: Anchor, Primary, and Secondary. The fields used in the DDF Headers are
defined in Table 18. The Anchor, Primary and Secondary headers in the DDF structure MUST have the
same value in all fields except the CRC, Sequence_Number, Open_Flag and Header_Type. The Anchor
header is NOT REQUIRED to track configuration changes and does not use the Sequence_Number and
Open_Flag fields. All DDF Headers MUST adhere to the field definitions and uses described in Table 18.

Common RAID DDF Spec. 77
 Revision 1.2

Table 18: DDF Header Fields

Element Size
(Bytes)

Description

Signature 4 Unique Signature for DDF_Header Section (See Table
17)

CRC 4 CRC for the section (See Section 5.3). The CRC is
covers the entire DDF Header section.

DDF_Header_GUID 24 GUID for the configuration or group (See Section
0)

DDF_rev 8 This field contains the revision number of the DDF
specification to which this DDF structure adheres.
If the DDF structure adheres to an official
version of the DDF specification, this field MUST
contain an ASCII string in xx.yy.zz format, where
x, y, and z are integer values 0-9. xx is the
major revision number. yy is the minor revision
number and zz is the development revision number.
Minor DDF revisions are backward compatible to
other minor revisions within the same major
revision category.

This field MAY also be used to state that the
structure does not adhere to an official version
of the DDF specification but is a vendor unique
implementation of the structure. If the DDF
structure uses a vendor unique specification, this
field MUST be an ASCII string in CCxxxxxx format,
where C is any non-numeric character. x can be any
character.

NOTE: The specification allows vendor unique
implementations to be marked as such to allow a
controller to notify the system administrator
before importing or erasing configurations created
using a vendor unique implementation of a DDF
structure.

Sequence_Number 4 Sequence number for configuration changes. Initial
value MUST be 0x00000001. Wraparound is indicated
by 0x00000000. Updating the Sequence_Number is
OPTIONAL when the Vendor Specific Logs section,
the Bad Block Management section or the Diagnostic
Space section is updated. MUST be set to
0xFFFFFFFF in the Anchor header to indicate that
configuration changes are not tracked in the
Anchor Header.

Timestamp 4 Header update timestamp. MUST be set when the DDF
header is updated. Used for a chronological hint
only as this may not be consistent across
controllers in the configuration.

Common RAID DDF Spec. 78
 Revision 1.2

Open_Flag 1 DDF open/close flag. The DDF Open_Flag MUST be set
on a physical disk before starting configuration
change writes to the physical disk. The flag MUST
be cleared (i.e., set to 0x00) after a successful
write of configuration data to the physical disk.
Open_Flag MUST NOT set during log entry updates.
This field MUST be set to 0xFF in the Anchor
Header. The valid values for the flag are:

0x00 = DDF closed;
0x01-0x0F = DDF Opened;
0x10-0xFE = Reserved;
0xFF = Not tracking DDF open/close. Used in the
Anchor Header.

NOTE: Any value of 0x01 through 0x0F means that
the DDF structure is open. An implementation MAY
use different values for different reasons the DDF
structure is open. However, these reasons are not
defined in the specification and may differ
between different implementations.

Foreign_Flag 1 Foreign_Flag MUST be set when the controller has
not imported the configuration defined by this DDF
structure. With this flag set (and CRC
recalculated/updated), nothing else is changed in
the DDF structure and this physical disk MUST be
marked as foreign until configuration is imported,
cleared or the physical disk is physically
removed. The valid values for this field are:

0x00 = Not Foreign
0x01 = Foreign

NOTE: This is to ensure that foreign
configurations are imported with a user’s explicit
acknowledgement. If a user has not acknowledged
such an action then this flag is set and foreign
configuration is not presented to OS level. This
bit is persistent to tolerate controller swaps,
denoting original foreign physical disks when the
new controller sees all physical disks as foreign.

Disk_Grouping 1 Disk Grouping enforced/not enforced. When this
field is set Disk Grouping MUST be enforced. The
valid values for this field are:

0x00 = Not Enforced
0x01 = Enforced

Reserved 13 Filled with 0xFF
Header_Ext 32 Filled with 0xFF – Reserved for future use.
Primary_Header_L
BA

8 LBA of the DDF Header of Primary DDF Structure.

Secondary_Header
_LBA

8 LBA of the DDF Header of the Secondary DDF
structure. This field MUST be filled with 0xFF if
redundant DDF structures are not stored.

Common RAID DDF Spec. 79
 Revision 1.2

Header_Type 1 0x00 = Anchor DDF Header; Stored on the last block
of the physical disks
0x01 = Primary DDF Header
0x02 = Secondary DDF Header

Reserved 3 Filled with 0xFF
Workspace_Length 4 Block count for reserved workspace that MAY be

used for optional vendor specific functions. At
least 16MB MUST be reserved for workspace. Thus,
this field MUST have a value greater than or equal
to 32,768.

Workspace_LBA 8 LBA of the first block of the reserved workspace.
Max_PD_Entries 2 Maximum number of Physical Disk Entries. This is

implementation dependent. Actual number of
Physical Disks supported by a controller MAY be
less than number of entries allowed. DDF structure
implementations MUST only allow values of 15
(0x000F), 63 (0x003F), 255 (0x00FF), 1023
(0x03FF), and 4095 (0x0FFF).

Max_VD_Entries 2 Maximum number of Virtual Disk Entries. This is
implementation dependent. Actual number of Virtual
Disks supported by a controller MAY be less than
number of entries allowed.
DDF structure implementations MUST only allow
values of 15 (0x000F), 63 (0x003F), 255 (0x00FF),
1023 (0x03FF), and 4095 (0x0FFF).

Max_Partitions 2 Maximum number of Configuration Record Entries
(partitions) allowed per disk.

Configuration_Re
cord_Length

2 Virtual Disk Configuration Record (Section 5.9.1)
length in blocks. Depends on the value of
Max_Primary_Element_Entries field and calculated
using the following formula:

1+ROUNDUP(Max_Primary_Element_Entries*(4+8)/512)

Max_Primary_
Element_Entries

2 The maximum number of physical disks configurable
within a basic VD. This field determines value of
Configuration_Record_Length. DDF structure
implementations MUST only allow values of 16
(0x0010), 64 (0x0040), 256 (0x0100), 1024
(0x0400), and 4096 (0x1000).

NOTE: The value of this field determines value
Configuration_Record_Length and size of two fields
in the Virtual Disk Configuration Record:
Physical_Disk_Sequence and Starting_Block.

Reserved 54 Filled with 0xFF
Controller_Data_
Section

4 Offset of the start of the Controller Data
(Section 5.6) section from the Primary or
Secondary DDF Header LBA

Controller_Data_
Section_Length

4 Length of the Controller Data section in number of
blocks

Physical_Disk_Re
cords_Section

4 Offset of the start of the Physical Disk Records
(Section 5.7) section from the Primary or
Secondary Header LBA

Common RAID DDF Spec. 80
 Revision 1.2

Physical_Disk_Re
cords_Section_Le
ngth

4 Length of the Physical Disk Records section in
number of blocks. This field is dependant on the
entry in the Max_PD_Entries field.
Values allowed are 2, 8, 32, 128 and 512

Virtual_Disk_Rec
ords_Section

4 Offset of the start of the Virtual Disk Records
(Section 5.8) section from the Primary or
Secondary DDF Header LBA

Virtual_Disk_Rec
ords_Section_Len
gth

4 Length of the Virtual Disk Records section in
number of blocks. This value depends on the entry
in the Max_VD_Entries field.
Values allowed are 2, 8, 32, 128 and 512

Configuration_Re
cords_Section

4 Offset of the start of the Configuration Records
(Section 5.9) section from the Primary or
Secondary DDF Header LBA

Configuration_Re
cords_Section_Le
ngth

4 Length of the section in Configuration Records
section in number of blocks. The value of this
field MUST equal:
Configuration_Record_Length*(Max_Partitions+1).

Physical_Disk_Da
ta_Section

4 Offset from of the start of the Physical Disk Data
(Section 5.10)section from the start of the
Primary or Secondary DDF Header LBA

Physical_Disk_Da
ta_Section_Lengt
h

4 Length of the Physical Disk Data section in number
of blocks

BBM_Log_Section 4 Offset of the start of the Bad Block Management
Log (Section 5.11) from the start of the Primary
or Secondary Header LBA. This is an OPTIONAL
section and if the section is not implemented this
field MUST be set to 0xFFFFFFFF.

BBM_Log_Section_
Length

4 Length of the Bad Block Management Log section in
number of blocks. This is an OPTIONAL section and
if the section is not implemented this field MUST
be set to 0x00000000.

Diagnostic_Space 4 Offset of the start of the Diagnostic Space
(Section 5.11.1) section from the Primary or
Secondary DDF Header LBA. This is an OPTIONAL
section and if the section is not implemented this
field MUST be set to 0xFFFFFFFF.

Diagnostic_Space
_Length

4 Length of the Diagnostic Space section in number
of blocks. This is an OPTIONAL section and if the
section is not implemented this field MUST be set
to 0x00000000.

Vendor_Specific_
Logs_Section

4 Offset of the start of the Vendor Specific Logs
(Section 5.13) from the Primary or Secondary DDF
Header LBA. This is an OPTIONAL section and if the
section is not implemented this field MUST be set
to 0xFFFFFFFF.

Vendor_Specific_
Logs_Section_Len
gth

4 Length of the Vendor Specific Logs section in
number of blocks. This is an OPTIONAL section and
if the section is not implemented this field MUST
be set to 0x00000000.

Reserved 256 Filled with 0xFF

Common RAID DDF Spec. 81
 Revision 1.2

5.6 Controller Data
This section is global in context and provides information about the last controller that operated on an
attached RAID configuration. The Controller Data section MUST adhere to the field definitions and uses
described in Table 19. When a new controller accesses a DDF structure previously operated on by
another controller produced by the same vendor, it is up to the vendor implementation to determine
whether or not the information stored in the Vendor_Unique_Controller_Data field is used by the new
controller. When a new controller accesses a DDF Structure previously operated on by another controller
produced by a different vendor, the new controller SHOULD erase the data contained in the
Vendor_Unique_Controller_Data field and replace it with data specific to the new controller.

Table 19: Controller Data Fields

Element Size
(Bytes)

Description

Signature 4 Unique Signature for Controller_Data Section (See
Table 17)

CRC 4 CRC for the section (See Section 5.3). The CRC
covers the entire Controller_Data section.

Controller_GUID 24 Controller GUID (See Section 5.4.1)
Controller_Type 8 For controllers with a PCI host interface, this

field MUST contain the PCI ID of the controller.

Byte 0-1: Vendor ID
Byte 2-3: Device ID
Byte 4-5: Sub Vendor ID
Byte 6-7: Sub Device ID

For controllers with a non-PCI host interface,
bytes 6 and 7 of this field MUST be set to 0xFFFF.
Bytes 0 through 5 MAY be set to any value at the
discretion of the vendor.

Product_ID 16 This field is an ASCII field. This field MUST
contain the Product ID of the controller that last
operated on the RAID configuration. For
controllers that operate using the SCSI protocol,
this field MUST be set to the value of the PRODUCT
IDENTIFICATION field returned by the controller in
the standard Inquiry data. For ATA controllers,
this field MUST be set to the value the controller
would return for the PRODUCT IDENTIFICATION field
in the standard Inquiry data as described in the
SCSI / ATA Translation (SAT) draft specification.
For controllers that use neither the SCSI nor ATA
protocols, the controller MUST create a
Product_ID.

Reserved 8 Filled with 0xFF; Reserved for future use.
Vendor_Unique
_Controller_Data

448 Vendor unique controller data.

5.7 Physical Disk Records
The Physical Disk Records section MUST list all configured physical disks attached to the controller. A
physical disk is considered configured when it belongs to a Virtual Disk, is marked as a Spare, is
configured as a Legacy (pass-through) disk or is a physical disk that needs to be tracked by the controller
for a vendor-specific reason. This section is global in context (i.e., every configured physical disk has

Common RAID DDF Spec. 82
 Revision 1.2

information about all configured physical disks participating in the system described by the DDF
structure). This allows the detection of missing physical disks after a controller swap.

The length of this section is variable and is a function of maximum number of physical disks supported by
the implementation. It is RECOMMENDED that the maximum number of physical disks result in block
(512 byte) aligned sizes of the Physical Disk Records section. All Physical Disk Records sections MUST
adhere to the field definitions and uses described in Table 20.

Table 20: Physical Disk Records Fields

Element Size
(Bytes)

Description

Signature 4 Unique Signature for Physical_Disk_Records Section
(see Table 17).

CRC 4 CRC for the section (Section 5.3). The CRC covers
the entire Physical_Disk_Records section.

Populated_PDEs 2 Number of Physical Disk Entries (PDE)
used/populated

Max_PDE_Supporte
d

2 Number of maximum PDE supported by vendor

Reserved 52 Filled with 0xFF
Physical_Disk_En
tries

vari-
able

64-byte PDEs. The number of PDE entries in this
section is equal to Max_PD_Entries.

5.7.1 Physical Disk Entries
Physical Disk Entries (PDE) give minimal information about all physical disks attached to the controller.
PDEs are stored in the Physical Disk Records section (Section 5.7) Each PDE is a 64 byte structure.
Each PDE MUST adhere to the definitions and uses of the fields described in Table 21.

Table 21: Physical Disk Entry Fields

Element Size
(Bytes)

Description

PD_GUID 24 Physical Disk GUID (Section 5.4.2) for the
physical disk. If this entry refers to the
physical disk on which it is currently stored, the
value of this field MUST contain the same value as
the PD_GUID field in the Physical Disk Data
section (Section 5.10). For unused entries, this
field MUST be filled with 0xFF.

PD_Reference 4 Reference number to be used in VD Configuration
Records (Section 5.9.1). This field MUST equal the
value of the PD_Reference field of a physical
disk’s corresponding Physical Disk Data (Section
5.10)

PD_Type 2 Bit map describing a physical disk’s type.

Bit 0: 0 – Not using a forced PD_GUID (Section

5.4.2)
 1 - Using a forced PD_GUID (also called the

Forced_PD_GUID_Flag)
Bit 1: 0 – Not participating in a VD

Common RAID DDF Spec. 83
 Revision 1.2

 1 – Participating in a VD
Bit 2: 0 – Not a global spare
 1 – Global spare (VD Configuration Records

are ignored)
Bit 3: 0 – Not a spare disk
 1 – Spare disk (Bit2 and Bit3 are exclusive.

Bit3 MUST have precedence over Bit2)
Bit 4: 0 – Not foreign
 1 – Foreign (This is a Foreign disk and the

Foreign_Flag in the DDF Header on this
disk must be set. See Section 5.5)

Bit 5: 0 – Not a Pass-through/Legacy disk
 1 - Pass-through/Legacy disk (No DDF

structure is stored on this physical
disk as DDF structures are only stored
on configured physical disks and in the
controller. If there are no other
configured physical disks attached to
the controller, then this information
would only be stored in controller
NVRAM. An implementation MAY restrict
Pass-through/Legacy physical disks to
systems with at least one configured
disk attached to the RAID controller)

Bit 6: Reserved
Bit 7: Reserved
Bits 8-11: Reserved
Bits 15-12: Interface Type
 0x0 = Unknown
 0x1 = SCSI (parallel)
 0x2 = SAS
 0x3 = SATA
 0x4 = FC
 0x5-0xF = Reserved

All reserved bits MUST be set to 0.

PD_State 2 State of the physical disk as part of one or more
Virtual Disks.

Bit 0: 0 – Offline
 1 - Online
Bit 1: 0 – OK
 1 – Failed
Bit 2: 0 – Not Rebuilding
 1 – Rebuilding (Physical disk rebuilding for

a failed physical disk)
Bit 3: 0 – Not in Transition
 1 - Transition (e.g., replacing a member

physical disk through a copy operation)
Bit 4: 0 – No PFA/SMART error alerts
 1 - PFA/SMART error alerts
Bit 5: 0 - No Un-recovered Read Errors
 1 - Un-recovered Read Errors
Bit 6: 0 - Not missing
 1 - Missing (a physical disk may be Failed

and Missing)
Bit 7: Reserved

Common RAID DDF Spec. 84
 Revision 1.2

Bits 8-15: Reserved

All reserved bits MUST be set to 0.

NOTE-1: Bit 1 MUST have precedence among Bits 0-3.
If Bit 0 and Bit 1 are both set, then the physical
disk’s status is Failed and was probably Online
before status change.

NOTE-2: For a physical disk participating in
multiple VDs, the disk status Bits 1-3 MUST be set
if any part of the physical disk is going through
the corresponding process.

Configured_Size 8 Configured size of the physical disk in terms of
highest addressable LBA during normal operation.
The DDF structure MUST be stored at LBAs greater
than or equal to the value in this field.

Path_Information 18 This field contains information on the path from a
controller to a physical disk or the attach point
of the physical disk. This field is used for
information purposes only.

The Path_Information structure depends on the
physical disk Interface Type as defined in Bits
12-15 of the PD_Type field.

For Interface Type = 0x01 (SCSI), the
Path_Information structure MUST be interpreted as
follows:

Bytes 0-3: Path 0 information

Bits 7-0: LUN
Bits 15-8: SCSI Target ID
Bits 23-16: SCSI Channel
Bits 30-24: Reserved
Bit 31: 0 - Path 0 OK
 1 – Path 0 Broken

Bytes 4-7: Path 1 information (for systems with
multiple paths for redundancy)

Bits 7-0: LUN
Bits 15-8: SCSI Target ID
Bits 23-16: SCSI Channel
Bits 30-24: Reserved
Bit 31: 0 - Path 1 OK
 1 – Path 1 Broken

Bytes 8-17: Reserved

For Interface Type = 0x2 (SAS), the
Path_Information structure MUST be interpreted as
follows:

Bytes 0-7: Path 0 - SAS address of the end device
(edge expander or controller) where the physical
disk is attached.
Bytes 8-15: Path 1 - SAS address of the end device

Common RAID DDF Spec. 85
 Revision 1.2

(edge expander or controller) where the physical
disk is attached.

Byte 16:
 Bit 0-6: Path 0 PHY identifier
 Bit 7: 0 – Path 0 OK
 1 – Path 0 Broken
Byte 17:
 Bit 0-6: Path 1 PHY identifier
 Bit 7: 0 – Path 1 OK
 1 – Path 1 Broken

All reserved bytes or bits MUST be set to 0.

NOTE-1: Path 1 information bytes MUST be set to
0xFF when dual path support is not implemented for
this physical disk.

NOTE-2: For FC and SATA physical disks, this field
is undefined and all bytes MUST be set to 0x00.

Reserved 6 Filled with 0xFF

5.8 Virtual Disk Records
The Virtual Disk Records section lists all the configured VDs tracked by the DDF structure. It has global
context and must be stored on all configured physical disks. The length of this section is variable and is a
function of the maximum number of configurable virtual disks supported by the system implementation. It
is RECOMMENDED that the maximum number of configurable VDs supported result in a block (512 byte)
aligned Virtual Disk Records section. The Virtual Disk Records section MUST adhere to the field
definitions and uses described in Table 22.

Table 22: Virtual Disk Records Fields

Element Size
(Bytes)

Description

Signature 4 Unique Signature for Virtual_Disk_Records Section
(See Table 17)

CRC 4 CRC for the section (See Section 5.3). The CRC
covers the entire Virtual Disk Records section.

Populated_VDEs 2 Number of Virtual Disk Entries used/configured
Max_VDE_Supporte
d

2 Maximum number of VDEs supported by the
implementation

Reserved 52 Filled with 0xFF
Virtual_Disk_Ent
ries

vari-
able

64 Byte VDEs. The number of VDEs in this field is
equal to Max_VD_Entries.

5.8.1 Virtual Disk Entries
Virtual Disk Entries (VDE) contain information about the configured VDs. VDEs are stored in the Virtual
Disk Records (Section 5.8). Each VDE MUST adhere to the definitions and uses described in Table 23.

Table 23: Virtual Disk Entry Fields

Element Size Description

Common RAID DDF Spec. 86
 Revision 1.2

(Bytes)
VD_GUID 24 Virtual Disk GUID (Section 5.4.3). For unused

Virtual Disk Entries, this field MUST be filled
with 0xFF.

VD_Number 2 The VD_Number MAY be used to map directly to the
IDs (e.g., Logical Unit Numbers) presented to the
OS as the result of an enumerate targets type
command (e.g., SCSI Report LUNs command). For
internal SCSI RAID controllers, the VD_Number MAY
correspond directly to the LUN number reported to
the OS. However, for external RAID controllers
that have LUN masking and LUN mapping, the
VD_Number cannot be used for this purpose and the
RAID controller will have to implement its own
method for maintaining this information. The
VD_Number field needs to be managed during import
MUST be consistent across reboots. May be the
Valid range is 0-0x7FFF. 0x8000-0xFFFF is
reserved.

Reserved 2 Reserved Filled with 0xFF
VD_Type 4 Bitmap describing the VD’s type.

Bit 0: 0 – Private
 1 - Shared (Disk Grouping MUST be enforced

when this bit is set)
Bit 1: 0 – No Disk Grouping
 1 – Disk Grouping Enforced
Bit 2: 0 – VD_Name in ASCII format
 1 – VD_Name in Unicode format
Bit 3: 0 – Owner ID Not Valid
 1 – Owner ID Valid
Bits 15-4: Reserved
Bits 31-16: Primary Controller GUID CRC. Used as a

hint for the last controller that
owned a VD in a clustered environment.
The value stored in these bits MUST be
the 16-bit CRC of the Controller GUID.

All reserved bits MUST be set to 0.

NOTE-1: Bits 16-31 MUST be ignored when Bit 0 is
clear.
NOTE-2: If Bit 0 is set, the value of Bit 1 MUST
be ignored since Disk Grouping is automatically
enforced.
NOTE-3: If the Disk_Grouping field in the DDF
Header is set to 0x01, Bit 1 MUST be ignored since
Disk Grouping is automatically enforced for all
disks.
NOTE-4: If Bit 1 is set, disk grouping MUST be
enforced for all disks participating in the
virtual disk. This bit allows disk grouping to be
enforced on some drives in a DDF configuration and
not enforced on other drives.
NOTE-5: If Bit 2 is set, the value stored in the
VD_Name field MUST be compliant with Version 4.0
of the Unicode standard.

Common RAID DDF Spec. 87
 Revision 1.2

NOTE-6: If Bit 3 is clear, bits 16-31 are invalid.
If Bit 3 is set, bits 16-31 are valid.

VD_State 1 Bitmap describing the state of the virtual disk.

Bits 2-0:

0x0 - Optimal (The VD is operating and has
experienced no failures of the disks
that comprise VD.)

0x1 = Degraded (The VD has experienced at
least one failure of the disks that
comprise the VD. One more disk failure
could result in the VD being placed in
the “Failed” state indicating data
loss has occurred.)

0x2 = Deleted (The VD has been marked as
deleted by the system.)

0x3 = Missing (The VD has been marked as
missing by the system.)

0x4 = Failed (The VD has experienced enough
failures of the disks that comprise
the VD for unrecoverable data loss to
occur.)

0x5 = Partially Optimal (The VD has
experienced disk failures. The VD can
experience at least one more disk
failure before it is placed in the
“Degraded” state.)

0x6 = Reserved
0x7 = Reserved

Bit 3: 0 – Not Morphing
 1 – Morphing (The VD is performing a

morphing activity: RAID level migration,
online capacity expansion, shrinking,
defragmenting, stripe size migration,
etc.)

Bit 4: 0 – VD Consistent
 1 – VD Not Consistent
Bits 7-5: Reserved

All reserved bits MUST be set to 0.

NOTE-1: When the Morphing bit (Bit 3) is set, this
VD cannot be imported to another controller from a
different vendor as the new controller will not be
able to determine the state or type of morphing
activity. It is RECOMMENDED that no voluntary
migrations of physical disks between controllers
from different vendors be allowed when VDs
associated with these physical disks are in a
Morphing state.
NOTE-2: The VD Not Consistent bit (Bit 4) MUST be
set when a controller cannot guarantee a VD is
consistent. The term consistent designates the
state when all writes to a VD by client computer
system, that are acknowledged as successfully
completed by the controller, have been correctly

Common RAID DDF Spec. 88
 Revision 1.2

written to the VD, including any redundancy
information (e.g., parity). This bit SHOULD be
cleared for a VD on a clean shutdown of the
system. The bit MAY also be cleared during idle
periods after a controller has determined that all
writes have been consistently written to the VD.
The bit SHOULD NOT be used as an actual cache
synchronization flag.

Init_State 1 Bits 1-0: Initialization State
 0x00 = Not Initialized
 0x01 = Quick Initialization in Progress
 0x02 = Fully Initialized
 0x03 = Reserved

Bits 5-2: Reserved

Bits 7-6: User Access Mode
 0x00 = Read/Write
 0x01 = Reserved
 0x02 = Read Only
 0x03 = Blocked (User reads and writes
denied)

NOTE: The Quick Initialization in Progress state
MAY be used to indicate that the VD is being
initialized but is still available for read and/or
write access. Some controllers provide this
capability.

Reserved 14 Reserved Filled with 0xFF
VD_Name 16 This field MAY be used to contain a 16 byte ASCII

or Unicode string that is the name of the virtual
disk. Bit 2 of the VD_Type field MUST be used to
determine the Unicode or ASCII format of this
field. This field MAY match the volume name used
by some operating systems. If this field is not
used, all bytes MUST be set to zero.

5.9 Configuration Records
The Configuration Records section is local in context (i.e., relevant to physical disks where it is stored). It
is variable in length and the length is stored in the Configuration_Record_Section_Length field in the DDF
Header (Section 5.5). The Configuration_Record_Section_Length is implementation dependent and
MUST be managed during import/merge operations between different controller implementations. A
physical disk MAY have multiple partitions. Thus, a physical disk MAY be simultaneously listed in multiple
configuration records. These configuration records MUST only be stored on the relevant (participating)
physical disks. This section contains multiple records and these records MUST be either:

a. No Virtual Disk Configuration Records;

b. All Virtual Disk Configuration Records;

c. One Spare Assignment Record;

d. All Virtual Disk Configuration Records and one a Spare Assignment Record; or

e. All Vendor Unique Configuration Records.

Common RAID DDF Spec. 89
 Revision 1.2

The Spare Assignment Record MUST only be stored on the relevant physical disk. The number of
records stored on a physical disk MUST be one plus the value of the Max_Partitions field in the DDF
header (Section 5.5). One extra record is provided to allow writing a modified entry before invalidating
original. In the event that a Configuration Record section contains Max_Partitions Virtual Disk
Configuration Records and One Spare Assignment Record, there will not be enough space to allow
writing a modified entry before invalidating the original. It is up to the implementation to determine how to
handle this situation. In certain situations, an implementation MAY convert a revertible spare to invalidate
the Spare Assignment Record to provide the extra record for writing the new configuration. Another
method would be to copy the Spare Assignment Record to Workspace temporarily and to copy it back
after the new configuration record is written. To invalidate a Virtual Disk Configuration Record, a Spare
Assignment Record, or a Vendor Unique Configuration Record, 0xFFFFFFFF MUST be stored in the
Signature field of the record.

5.9.1 Virtual Disk Configuration Record
The size of VD configuration record MUST be the same as Configuration_Record_Length indicated in the
DDF header (Section 5.5). Each VD configuration record MUST adhere to the definitions and uses
described in Table 24.

Table 24: Virtual Disk Configuration Record Fields

Element Size
(Bytes)

Description

Signature 4 For used entries, this field MUST be set to
the Unique Signature for
VD_Configuration_Record (Table 17).

For unused entries, this field MUST be set to
0xFFFFFFFF.

NOTE: Invalidating a used entry MAY be
accomplished by only writing 0xFFFFFFFF to
this field. This allows the possibility of
un-deleting a configuration entry.

CRC 4 CRC of the VD Configuration Record (Section
5.3)

VD_GUID 24 VD GUID (Section 5.4.3)
Timestamp 4 Configuration or reconfiguration timestamp.

If this field is different than the timestamp
in the VD’s VD GUID, the configuration has
changed since the VD was created. New
timestamps MUST be greater than existing
timestamps. Timestamps SHOULD only be used as
chronological hints since they may not be
consistent across controllers

Sequence_Number 4 Sequence number for configuration record
changes. The initial value of this field MUST
be 0x00000001. Subsequent configuration
changes MUST increment this field by one. A
wraparound of the sequence number MUST be
indicated by the value 0x00000000.

Reserved 24 Filled with 0Xff
Primary_Element_Count 2 The number of physical disks used in a basic

VD.

Common RAID DDF Spec. 90
 Revision 1.2

Strip_Size 1 Stripe depth in (2^n)*512 format where n is
the value of the field.

Examples:
n=0 – 512B stripe depth
n=1 – 1KB stripe depth
n=2 – 2KB stripe depth
n=3 – 4KB stripe depth
n=7 – 64KB stripe depth
n=11 – 1MB stripe depth
etc.

Primary_RAID_Level 1 RAID level of the BVD as defined in Table 1.
RAID_Level_Qualifier 1 The RAID level qualifier as defined in

Section 4.2.
Secondary_Element_Count 1 The number of BVDs in a VD with a secondary

RAID level as defined in Section 4.2.19
(e.g., RAID 50). For VDs without a secondary
RAID level, this field MUST be set to 1.

Secondary_Element_Seq 1 Position of current basic VD in secondary VD.
Valid only if secondary element count > 1.

Secondary_RAID_Level 1 The secondary RAID level as defined in Table
12. Valid only if Secondary_Element_Count >
1.

Block_Count 8 This field applies to the physical disk on
which the configuration record is stored. The
field states the size in blocks of the
partition on the physical disk that is
participating in the VD described by this
configuration record.

VD_Size 8 The size of the user addressable space in the
virtual disk. The size is stated in number of
blocks.

Reserved 8 Filled with 0xFF
Associated_Spares 32 This field contains eight 4-byte entries for

associated spare physical disks. Each used
entry MUST contain the PD_Reference defined
in the Physical Disk Entry (Section 5.7.1)
for the associated spare physical disk.
Unused entries MUST be set to 0xFFFFFFFF.

Bytes 0-3: Spare Entry 0
Bytes 4-7: Spare Entry 1
Bytes 8-11: Spare Entry 2
Bytes 12-15: Spare Entry 3
Bytes 16-19: Spare Entry 4
Bytes 20-23: Spare Entry 5
Bytes 24-27: Spare Entry 6
Bytes 28-31: Spare Entry 7

NOTE:
This field is used to detect missing
dedicated spares as Spares Assignment Records
are local.

Common RAID DDF Spec. 91
 Revision 1.2

Cache Policies &
Parameters

8 Cache policies for the VD. Cache policies,
algorithms and parameters are implementation
dependent. Therefore, bytes 1 through 7 are
vendor specific. Byte 0 is a bit field where
the bits are defined as:

Bit0: 0-WriteThrough
 1-Writeback
Bit1: 0-Always (ignored if Bit0=0)
 1-Adaptive (ignored if Bit0=0)
Bit2: 0-No Read Ahead
 1-Read Ahead
Bit3: 0-Always (ignored if Bit2=0)
 1-Adaptive (ignored if Bit2=0)
Bit4: 0-No write caching if battery low or
 not present
 1-Write caching allowed if battery low
 or not present
Bit5: 0-No write caching allowed
 1-Write caching allowed
Bit6: 0-No read caching allowed
 1-Read caching allowed
Bit7: 0-No vendor specific caching algorithm
 1-Vendor specific caching algorithm

NOTE-1: Bits 4-6 are master enable/disable
settings for cache parameters.

NOTE-2: If bit7 is set, then bits 0-3 SHOULD
left clear and ignored. Bits 4-6 SHOULD still
be used.

NOTE-3: During Vendor migration, if bit7 is
found set, then the user SHOULD be notified
and bit7 SHOULD be cleared. Bits 0-3 SHOULD
be set to controller default and bits 4-6
SHOULD be preserved.

BG_Rate 1 This field is used to assign background task
priorities to individual VDs. Examples of
background tasks are: initialization, RAID
level migration, expansion, etc. If the field
is set to 0xFF, no background task rate has
been set for this VD and the controller
defaults SHOULD be used. If the field has a
value of 0x00 through 0xFA, the VD SHOULD be
assigned this relative priority for all
background tasks. 0x00 is the lowest priority
and 0xFA is the highest.

NOTE: The actual weighting of the background
task priorities is implementation dependent.

Reserved 3 Filled with 0xFF
Reserved 52 Filled with 0xFF
Reserved 192 Filled with 0xFF
V0 32 Filled with 0xFF – Reserved for future use

Common RAID DDF Spec. 92
 Revision 1.2

V1 32 Filled with 0xFF – Reserved for future use
V2 16 Filled with 0xFF – Reserved for future use
V3 16 Filled with 0xFF – Reserved for future use
Vendor Specific Scratch
Space

32 Vendor unique information. All bytes in this
field MUST be set to 0xFF when not used by
the implementation.

Physical_Disk_Sequence vari-
able

This field gives the sequence of physical
disks in the BVD. This field contains
multiple 4-byte entries. Each used entry MUST
be a PD_Reference from a Physical_Disk_Entry
(Section 5.7.1). Unused entries MUST be
filled with 0xFFFFFFFF.

Used entries provide the primary element
sequence in ascending order. For the BVD, the
number of used entries MUST equal the
Primary_Element_Count in the
Virtual_Disk_Configuration_Record for the
BVD.

If a physical disk that was part of this VD
has been removed from the VD, reconfigured as
part of another VD, and then returned to the
system containing the original VD, the
PD_Reference entry for the returned physical
disk MUST be set to 0x00000000. This is to
prevent the controller from erroneously
reading the data from the replaced drive as
part of the current VD.

NOTE: This is a variable size field. Its size
is determined by the following formula:

Max_Primary Element_Entries * 4

Starting_Block vari-
able

This field gives the starting LBAs for the
partitions of the physical disks
participating in the BVD. This field is
variable in size and is comprised of 8-byte
entries.

Each entry contains an 8-byte LBA. Each entry
corresponds to the physical drive with the
PD_Reference stored in the same entry index
in Physical_Disk_Sequence. Each entry MUST
contain the starting LBA of its corresponding
physical disk’s partition that is part of the
BVD.

Unused entries MUST be filled with
0xFFFFFFFFFFFFFFFF.

NOTE: This is a variable size field. Its size
is determined by the following formula:

Max_Primary_Element_Entries * 8

Common RAID DDF Spec. 93
 Revision 1.2

5.9.2 Vendor Unique Configuration Record
The vendor unique configuration record allows proprietary implementations within DDF structures. Its size
MUST be the same as the Configuration_Record_Length field of the DDF header (Section 5.5). This
structure is vendor specific except for the first 32-bytes which MUST adhere to the definitions and uses
described in Table 25.

Table 25: Vendor Unique Configuration Record Mandatory Fields

Element Size
(Bytes)

Description

Signature 4 Unique Signature for VU_Configuration_Record
(Table 17)

CRC 4 CRC of the Vendor_Unique_Configuration_Record
(Section 5.3)

VD_GUID 24 VD GUID (5.4.3)

5.9.3 Spare Assignment Record
A Spare Assignment Record MUST be present on a physical disk only if the physical disk is a spare. The
length of this record MUST be equal to the value in the Configuration_Record_Length field of the DDF
Header (Section 5.5). Spare Assignment Records MUST adhere to the filed definitions and uses
described in Table 26.

Table 26: Spare Assignment Record Fields

Element Size
(Bytes)

Description

Signature 4 Unique Signature for Spare_Assignment_Record (Table
17)

CRC 4 CRC of the Spare_Assignment_Record (Section 5.3)
Timestamp 4
Reserved 7 0xFFFFFFFFFFFFFF

Common RAID DDF Spec. 94
 Revision 1.2

Spare_Type 1 Bit0: 0 – Global
 1 – Dedicated
Bit1: 0 – Committable
 1 – Revertible
Bit2: 0 – Not Active
 1 – Active
Bit3: 0 – No Enclosure Affinity
 1 – Enclosure Affinity
Bits 7-4: Reserved

The reserved bits MUST be set to 0.

NOTE-1: Committable spares (Bit1 = 0) become
permanent members of VDs after a rebuild. Revertible
(Bit1 = 1) spares revert back to Spare status after
the replacement of the original failed physical disk.
An import, merge, or roaming action MAY require
commitment of an active (failed-over) revertible
spare.
NOTE-2: An active spare is currently host user data
on a VD for failed physical disk.
NOTE-3: A spare with Enclosure Affinity MAY only be
used as a spare for VDs that reside on disks in the
same enclosure as the spare. Keeping track of which
disks are associated with a particular enclosure is
implementation dependent.

Populated_SAEs 2 Number of Spare Assignment Entries used
Max_SAE_Supported 2 Maximum number of SAE supported by vendor.
Reserved 8 Filled with 0xFF
Spare_Assignment_Entrie
s

vari-
able

Packed 32-byte spare assignment entries for dedicated
spare physical disks (See Section 5.9.3.1). All bytes
of unused entries MUST be set to 0xFF.

For active revertible global spares (Spare_Type: Bit0
= 0, Bit1 = 1, Bit2 = 1), a Spare Assignment Entry
MUST be present for each VD that the Global spare is
currently hosting user data for a failed physical
disk. For Non-Active Global spares (Spare_Type: Bit0
= 0, Bit2 = 0), all entries MUST be unused.

For dedicated spares (Spare_Type: Bit0 = 1), a Spare
Assignment Entry MUST be present for each VD that the
dedicated spare may serve as a replacement. If a
dedicated spare is active (Spare_Type: Bit2 = 1), the
spare is replacing failed disks on any VDs that have
VD_Configuration_Records on the spare and also have
Spare Assignment Entries in this field.

NOTE: This is a variable size field which depends on
Configuration_Record_Length. It is equal to
Configuration_Record_Length minus 32 bytes.

Common RAID DDF Spec. 95
 Revision 1.2

5.9.3.1 Spare Assignment Entry

A Spare Assignment Entry identifies the Virtual Disks to which a dedicated spare physical disk is
assigned. The Spare Assignment Entry also allows a dedicated spare to be assigned to a particular
Secondary Element of a hybrid VD (e.g., RAID50). Spare Assignment Entries MUST adhere to the field
definitions and uses described in Table 27.

Table 27: Spare Assignment Entry Fields

Element Size
(Bytes)

Description

VD GUID 24 VD GUID of a VD to which this spare physical disk is
assigned

Secondary_Element 2 VD Secondary Element number to which this spare
physical disk is assigned. If the spare is not
assigned to a particular secondary element, this
field MUST be set to 0xFFFF.

Reserved 6 Filled with 0xFF

5.10 Physical Disk Data
This section is local in context (i.e., only relevant to the physical disk on which it is stored). It stores the
Physical Disk GUID and the Reference Number that is used in the Physical Disk Entry (see Section 5.7.1)
for this physical disk. If the Physical Disk GUID is not available (possibly due to a missing or inaccessible
disk serial number) or not usable then a GUID MUST be generated (see Section 5.4.2) and the
Forced_PD_GUID_Flag set to 1. Physical Disk Data sections MUST adhere to the field definitions and
uses described in Table 28.

Table 28: Physical Disk Data Fields

Element Size
(Bytes)

Description

Signature 4 Unique signature for Physical_Disk_Data (Table 17)
CRC 4 CRC of the Physical_Disk_Data section (Section

5.3)
PD_GUID 24 Physical Disk GUID for this physical disk (Section

5.4.2)
PD_Reference 4 Physical Disk Reference Number.

For disks accessed by SCSI commands, the reference
number MUST be built by computing a 32-bit CRC of
the data contained in EVPD page 80.

For ATA and SATA disks, the reference number MUST
be built by computing a 32-bit CRC of the data
returned by the Identify Drive command.

The reference number is global across the
controller configuration and each disk on the
controller MUST have a unique reference number. In
case of conflict, a new value MUST be calculated.
The method is implementation dependent but MUST
insure that all disks in the configuration have

Common RAID DDF Spec. 96
 Revision 1.2

unique PD_Reference values. This field MUST be
managed when importing configured disk groups to
insure the PD_Reference values remain unique.

The values 0x00000000 and 0xFFFFFFFF are reserved
and MUST not be used as PD_Reference values.

Forced_Ref_Flag 1 0x00 = No
0x01 = Yes

The Forced_Ref_Flag is set when the PD_Reference
is generated in a manner different than described
in the PD_Reference field description. This
situation occurs in the event two or more
PD_References for different disks have the same
value.

Forced_PD_GUID_Flag 1 0x00 = No
0x01 = Yes

Once a Forced PD GUID is created for a physical
disk (see Section 5.4.2), the Forced PD GUID MUST
be associated with the physical disk as long as
the disk participates in the configuration.

Vendor Specific Scratch
Space

32 Vendor unique information. All bytes in this field
MUST be set to 0xFF when not used by the
implementation.

Reserved 442 Filled with 0xFF

5.11 Bad Block Management Log
This section is local in context (i.e., only relevant to the physical disk where it is stored). It is an
OPTIONAL section that allows block mapping and reassignment for defective blocks or the marking of
blocks that cannot be recovered during a rebuild or recovery operation due to a media error. The Bad
Block Management (BBM) Log section must adhere to the field definitions and uses described in Table
29.

Table 29: Bad Block Management Log Fields

Element Size
(Bytes)

Description

Signature 4 Unique Signature for Bad_Block_Management_Log
(Table 17)

CRC 4 CRC for the BBM Log (Section 5.3). The CRC covers
the entire Bad_Block_Management_Log section.

Entry_Count 2 Count for valid mapped/marked block entries. When
there are no mapped/marked blocks, this field MUST
be set to 0x0000. The maximum entry for this field
is the smaller of 254 or
Reserved_Spare_Block_Count.

Reserved_Spare_Block_Co
unt

4 Up to 0xFFFFFFFF. The value of this field is
implementation dependent.

Reserved 10 Filled with 0xFF
First_Spare_LBA 8 LBA of first spare block.
Mapped_Block_Entries 4064 Up to 254 packed 16-byte entries for mapped LBAs

Common RAID DDF Spec. 97
 Revision 1.2

(see Section 5.11.1). The entries MUST be
sequentially populated. Unused entries must be
filed with 0xFF.

5.11.1 Mapped/Marked Block Entry
A Mapped/Marked Block Entry identifies a contiguous group of blocks that are remapped to another
section on the physical disk or marked as unrecoverable due to a media error. Mapped/Marked Block
Entries MUST adhere to the field definitions and uses described in Table 30.

 Table 30: Mapped/Marked Block Entry Fields

Element Size
(Bytes)

Description

Defective_Block_Start 8 The LBA of the first defective block in a
contiguous group of defective blocks that are
remapped or marked as unrecoverable.

Spare_Block_Offset 4 If this field is set to 0xFFFFFFFF, the blocks
indicated by this Mapped/Marked Block Entry are
marked as unrecoverable due to a media error. If
this field is not set to 0xFFFFFFFF, the blocks
MUST be remapped to a new location. The field
contains the offset from the First_Spare_LBA where
the group of defect blocks MUST be remapped.

Remapped_Marked_Count 2 Number of blocks to be remapped or marked as
unrecoverable.

Reserved 2 Filled with 0xFF

5.12 Diagnostic Space
The Diagnostic Space section is local in context. This section is OPTIONAL. If implemented, the size of
this section is stated in the Diagnostic_Space_Length field of the DDF Header (Section 5.5). The section
MAY be used for destructive read/write tests on the physical disk.

5.13 Vendor Specific Logs
The Vendor Specific Logs section is OPTIONAL. The structure of this section is implementation/vendor
specific except for the first 32 bytes which are used for mandatory fields. The first 32 bytes MUST adhere
to the field definitions and uses described in Table 31.

Table 31: Vendor Specific Logs Mandatory Fields

Element (Size
Bytes)

Description

Signature 4 Unique signature for Vendor_Specific_Logs section
(Table 17)

CRC 4 CRC for the Vendor Specific Logs section (Section
0) The CRC is covers entire Vendor_Specific_Logs
section. Any unused bytes in the section MUST be
filled with 0xFF.

Log_Owner 8 T10 vendor ID of the log owner. If the vendor
specific logs are used, this field MUST be

Common RAID DDF Spec. 98
 Revision 1.2

populated with the T10 Vendor ID of the vendor
that created the log. It MUST be set to
0xFFFFFFFFFFFFFFFF when the logs are empty or not
used.

Reserved 16 Filled with 0xFF

Common RAID DDF Spec. 99
 Revision 1.2

